Proof 01. 1 ⊢ ∃x. P x ∧ ∀y. P y → x = y, hypo. 02. 2 ⊢ P x ∧ ∀y. P y → x = y, hypo. 03. 2 ⊢ P x, conj_eliml 2. 04. 2 ⊢ ∀y. P y → x = y, conj_elimr 2. 05. 2 ⊢ P y → x = y, uq_elim 4. 06. 6 ⊢ x = y, hypo. 07. 2, 6 ⊢ P y, eq_subst 6 3. 08. 2 ⊢ x = y → P y, subj_intro 7. 09. 2 ⊢ x = y ↔ P y, bij_intro 8 5. 10. 2 ⊢ ∀y. x = y ↔ P y, uq_intro 9. 11. 2 ⊢ ∃x. ∀y. x = y ↔ P y, ex_intro 10. 12. 1 ⊢ ∃x. ∀y. x = y ↔ P y, ex_elim 1 11. ex_uniq_from_mixed_form. ⊢ (∃x. P x ∧ ∀y. P y → x = y) → (∃x. ∀y. x = y ↔ P y), subj_intro 12.
Dependencies
The given proof depends on one axiom:
eq_subst.