Proof 01. 1 ⊢ ∃x. S x ∧ P x ∧ ∀y. P y → x = y, hypo. 02. 2 ⊢ S x ∧ P x ∧ ∀y. P y → x = y, hypo. 03. 2 ⊢ S x, conj_elimll 2. 04. 2 ⊢ P x, conj_elimlr 2. 05. 2 ⊢ ∀y. P y → x = y, conj_elimr 2. 06. 2 ⊢ P y → x = y, uq_elim 5. 07. 7 ⊢ x = y, hypo. 08. 2, 7 ⊢ P y, eq_subst 7 4. 09. 2 ⊢ x = y → P y, subj_intro 8. 10. 2 ⊢ x = y ↔ P y, bij_intro 9 6. 11. 2 ⊢ ∀y. x = y ↔ P y, uq_intro 10. 12. 2 ⊢ S x ∧ ∀y. x = y ↔ P y, conj_intro 3 11. 13. 2 ⊢ ∃x. S x ∧ ∀y. x = y ↔ P y, ex_intro 12. 14. 1 ⊢ ∃x. S x ∧ ∀y. x = y ↔ P y, ex_elim 1 13. ex_uniq_from_mixed_form. ⊢ (∃x. S x ∧ P x ∧ ∀y. P y → x = y) → (∃x. S x ∧ ∀y. x = y ↔ P y), subj_intro 14.
Dependencies
The given proof depends on one axiom:
eq_subst.