Theorem iadd_neutr

Theorem. iadd_neutr
a ∈ ℤ → a + 0 = a
Proof
iadd_neutr. ⊢ a ∈ ℤ → a + 0 = a,
  pred_restr int_incl_in_real radd_neutr.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, radd_neutr.