Proof let rec f ↔ (∀n. n ∈ ℕ → app f (n + 1) = φ n (app f n)). 01. 1 ⊢ app f 0 = x0 ∧ rec f, hypo. 02. 2 ⊢ app g 0 = x0 ∧ rec g, hypo. 03. 1 ⊢ app f 0 = x0, conj_eliml 1. 04. 2 ⊢ app g 0 = x0, conj_eliml 2. 05. 1, 2 ⊢ app f 0 = app g 0, eq_trans_rr 3 4. 06. 6 ⊢ n ∈ ℕ, hypo. 07. 7 ⊢ app f n = app g n, hypo. 08. 1 ⊢ rec f, conj_elimr 1. 09. 2 ⊢ rec g, conj_elimr 2. 10. 1, 6 ⊢ app f (n + 1) = φ n (app f n), uq_bounded_elim 8 6. 11. 2, 6 ⊢ app g (n + 1) = φ n (app g n), uq_bounded_elim 9 6. 12. 1, 6, 7 ⊢ app f (n + 1) = φ n (app g n), eq_subst 7 10, P t ↔ app f (n + 1) = φ n t. 13. 1, 2, 6, 7 ⊢ app f (n + 1) = app g (n + 1), eq_trans_rr 12 11. 14. 1, 2 ⊢ n ∈ ℕ → app f n = app g n → app f (n + 1) = app g (n + 1), subj_intro_ii 13. 15. 1, 2 ⊢ ∀n. n ∈ ℕ → app f n = app g n → app f (n + 1) = app g (n + 1), uq_intro 14. 16. 1, 2 ⊢ ∀n. n ∈ ℕ → app f n = app g n, nat_induction 5 15, P n ↔ app f n = app g n. nat_rec_uniqueness. ⊢ app f 0 = x0 ∧ (∀n. n ∈ ℕ → app f (n + 1) = φ n (app f n)) → app g 0 = x0 ∧ (∀n. n ∈ ℕ → app g (n + 1) = φ n (app g n)) → ∀n. n ∈ ℕ → app f n = app g n, subj_intro_ii 16.
Dependencies
The given proof depends on seven axioms:
comp, eq_refl, eq_subst, ext, radd_closed, real_is_set, subset.