Theorem iadd_neutl

Theorem. iadd_neutl
a ∈ ℤ → 0 + a = a
Proof
iadd_neutl. ⊢ a ∈ ℤ → 0 + a = a,
  pred_restr int_incl_in_real radd_neutl.

Dependencies
The given proof depends on five axioms:
comp, eq_refl, eq_subst, radd_comm, radd_neutr.