Proof nle_antisym. ⊢ a ∈ ℕ → b ∈ ℕ → a ≤ b → b ≤ a → a = b, pred_ii_restr nat_incl_in_real rle_antisym.
DependenciesThe given proof depends on five axioms:comp, eq_subst, radd_closed, real_is_set, rle_antisym.