Proof 01. 1 ⊢ set x ∧ set y, hypo. 02. 1 ⊢ set x, conj_eliml 1. 03. 1 ⊢ set y, conj_elimr 1. 04. ⊢ ⋂(x, y) = ⋂(x, y), eq_refl. 05. ⊢ (x, y) = {{x}, {x, y}}, pair_eq. 06. ⊢ ⋂(x, y) = ⋂{{x}, {x, y}}, eq_subst 5 4, P u ↔ ⋂(x, y) = ⋂u. 07. 1 ⊢ set {x}, set_sg 2. 08. 1 ⊢ set {x, y}, pairing 2 3. 09. 1 ⊢ set {x} ∧ set {x, y}, conj_intro 7 8. 10. 1 ⊢ ⋂{{x}, {x, y}} = {x} ∩ {x, y}, Intersection_pair_set 9. 11. 1 ⊢ ⋂(x, y) = {x} ∩ {x, y}, eq_trans 6 10. 12. ⊢ {x} ⊆ {x, y}, union_incl_left. 13. ⊢ {x} ∩ {x, y} = {x}, intersection_from_incl 12. 14. 1 ⊢ ⋂(x, y) = {x}, eq_trans 11 13. 15. 1 ⊢ ⋂⋂(x, y) = ⋂{x}, f_equal 14, f u = ⋂u. 16. 1 ⊢ ⋂{x} = x, Intersection_sg 2. 17. 1 ⊢ ⋂⋂(x, y) = x, eq_trans 15 16. 18. ⊢ fst (x, y) = ⋂⋂(x, y), fst_eq. 19. 1 ⊢ fst (x, y) = x, eq_trans 18 17. pair_fst_conj. ⊢ set x ∧ set y → fst (x, y) = x, subj_intro 19. 20. ⊢ ⋃(x, y) = ⋃(x, y), eq_refl. 21. ⊢ ⋃(x, y) = ⋃{{x}, {x, y}}, eq_subst 5 20, P u ↔ ⋃(x, y) = ⋃u. 22. 1 ⊢ ⋃{{x}, {x, y}} = {x} ∪ {x, y}, Union_pair_set 9. 23. 1 ⊢ ⋃(x, y) = {x} ∪ {x, y}, eq_trans 21 22. 24. ⊢ {x} ∪ {x, y} = {x, y}, union_from_incl 12. 25. 1 ⊢ ⋃(x, y) = {x, y}, eq_trans 23 24. 26. 1 ⊢ ⋃⋃(x, y) = ⋃{x, y}, f_equal 25, f u = ⋃u. 27. 1 ⊢ ⋃{x, y} = x ∪ y, Union_pair_set 1. 28. 1 ⊢ ⋃⋃(x, y) = x ∪ y, eq_trans 26 27. 29. 1 ⊢ ⋂{x, y} = x ∩ y, Intersection_pair_set 1. 30. 1 ⊢ ⋂⋃(x, y) = ⋂{x, y}, f_equal 25, f u = ⋂u. 31. 1 ⊢ ⋂⋃(x, y) = x ∩ y, eq_trans 30 29. 32. ⊢ scd (x, y) = ⋂⋃(x, y) ∪ (⋃⋃(x, y) \ ⋂⋂(x, y)), scd_eq. 33. 1 ⊢ scd (x, y) = (x ∩ y) ∪ (⋃⋃(x, y) \ ⋂⋂(x, y)), eq_subst 31 32, P a ↔ scd (x, y) = a ∪ (⋃⋃(x, y) \ ⋂⋂(x, y)). 34. 1 ⊢ scd (x, y) = (x ∩ y) ∪ ((x ∪ y) \ ⋂⋂(x, y)), eq_subst 28 33, P a ↔ scd (x, y) = (x ∩ y) ∪ (a \ ⋂⋂(x, y)). 35. 1 ⊢ scd (x, y) = (x ∩ y) ∪ ((x ∪ y) \ x), eq_subst 17 34, P a ↔ scd (x, y) = (x ∩ y) ∪ ((x ∪ y) \ a). 36. ⊢ (x ∪ y) \ x = (x ∪ y) ∩ compl x, diff_as_inter. 37. 1 ⊢ scd (x, y) = (x ∩ y) ∪ ((x ∪ y) ∩ compl x), eq_subst 36 35, P a ↔ scd (x, y) = (x ∩ y) ∪ a. 38. ⊢ (x ∪ y) ∩ compl x = (x ∩ compl x) ∪ (y ∩ compl x), intersection_distr. 39. ⊢ x ∩ compl x = ∅, intersection_compl. 40. ⊢ (x ∩ compl x) ∪ (y ∩ compl x) = ∅ ∪ (y ∩ compl x), f_equal 39, f a = a ∪ (y ∩ compl x). 41. ⊢ ∅ ∪ (y ∩ compl x) = y ∩ compl x, union_neutl. 42. ⊢ (x ∩ compl x) ∪ (y ∩ compl x) = y ∩ compl x, eq_trans 40 41. 43. ⊢ (x ∪ y) ∩ compl x = y ∩ compl x, eq_trans 38 42. 44. ⊢ y ∩ compl x = compl x ∩ y, intersection_comm. 45. ⊢ (x ∪ y) ∩ compl x = compl x ∩ y, eq_trans 43 44. 46. 1 ⊢ scd (x, y) = (x ∩ y) ∪ (compl x ∩ y), eq_subst 45 37, P a ↔ scd (x, y) = (x ∩ y) ∪ a. 47. ⊢ (x ∪ compl x) ∩ y = (x ∩ y) ∪ (compl x ∩ y), intersection_distr. 48. ⊢ (x ∩ y) ∪ (compl x ∩ y) = (x ∪ compl x) ∩ y, eq_symm 47. 49. 1 ⊢ scd (x, y) = (x ∪ compl x) ∩ y, eq_trans 46 48. 50. ⊢ x ∪ compl x = UnivCl, union_compl. 51. ⊢ (x ∪ compl x) ∩ y = UnivCl ∩ y, f_equal 50, f a = a ∩ y. 52. ⊢ UnivCl ∩ y = y, intersection_neutl. 53. ⊢ (x ∪ compl x) ∩ y = y, eq_trans 51 52. 54. 1 ⊢ scd (x, y) = y, eq_trans 49 53. pair_scd_conj. ⊢ set x ∧ set y → scd (x, y) = y, subj_intro 54.
Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing.