Proof 01. 1 ⊢ x ∈ ∅ ∪ A, hypo. 02. 1 ⊢ x ∈ ∅ ∨ x ∈ A, union_elim 1. 03. 3 ⊢ x ∈ ∅, hypo. 04. 3 ⊢ x ∈ A, empty_efq 3. 05. 5 ⊢ x ∈ A, hypo. 06. 1 ⊢ x ∈ A, disj_elim 2 4 5. 07. ⊢ x ∈ ∅ ∪ A → x ∈ A, subj_intro 6. 08. 8 ⊢ x ∈ A, hypo. 09. 8 ⊢ x ∈ ∅ ∪ A, union_intror 8. 10. ⊢ x ∈ A → x ∈ ∅ ∪ A, subj_intro 9. 11. ⊢ x ∈ ∅ ∪ A ↔ x ∈ A, bij_intro 7 10. 12. ⊢ ∀x. x ∈ ∅ ∪ A ↔ x ∈ A, uq_intro 11. union_neutl. ⊢ ∅ ∪ A = A, ext 12.
Dependencies
The given proof depends on five axioms:
comp, efq, eq_refl, eq_subst, ext.