Proof 01. 1 ⊢ set x ∧ set y, hypo. 02. 1 ⊢ set x, conj_eliml 1. 03. 1 ⊢ set y, conj_elimr 1. 04. 1 ⊢ x ∈ {x, y}, in21 2. 05. 1 ⊢ y ∈ {x, y}, in22 3. 06. 6 ⊢ u ∈ ⋂{x, y}, hypo. 07. 1, 6 ⊢ u ∈ x, Intersection_elim 6 4. 08. 1, 6 ⊢ u ∈ y, Intersection_elim 6 5. 09. 1, 6 ⊢ u ∈ x ∩ y, intersection_intro 7 8. 10. 1 ⊢ u ∈ ⋂{x, y} → u ∈ x ∩ y, subj_intro 9. 11. 1 ⊢ ∀u. u ∈ ⋂{x, y} → u ∈ x ∩ y, uq_intro 10. 12. 1 ⊢ ⋂{x, y} ⊆ x ∩ y, incl_intro 11. 13. 13 ⊢ u ∈ x ∩ y, hypo. 14. 13 ⊢ u ∈ x, intersection_eliml 13. 15. 13 ⊢ u ∈ y, intersection_elimr 13. 16. 13 ⊢ set u, set_intro 13. 17. 17 ⊢ a ∈ {x, y}, hypo. 18. 17 ⊢ a ∈ {x} ∨ a ∈ {y}, union_elim 17. 19. 19 ⊢ a ∈ {x}, hypo. 20. 1, 19 ⊢ a = x, sg_elim 2 19. 21. 1, 13, 19 ⊢ u ∈ a, eq_subst_rev 20 14, P x ↔ u ∈ x. 22. 22 ⊢ a ∈ {y}, hypo. 23. 1, 22 ⊢ a = y, sg_elim 3 22. 24. 1, 13, 22 ⊢ u ∈ a, eq_subst_rev 23 15, P x ↔ u ∈ x. 25. 1, 13, 17 ⊢ u ∈ a, disj_elim 18 21 24. 26. 1, 13 ⊢ a ∈ {x, y} → u ∈ a, subj_intro 25. 27. 1, 13 ⊢ ∀a. a ∈ {x, y} → u ∈ a, uq_intro 26. 28. 1, 13 ⊢ u ∈ ⋂{x, y}, Intersection_intro 16 27. 29. 1 ⊢ u ∈ x ∩ y → u ∈ ⋂{x, y}, subj_intro 28. 30. 1 ⊢ ∀u. u ∈ x ∩ y → u ∈ ⋂{x, y}, uq_intro 29. 31. 1 ⊢ x ∩ y ⊆ ⋂{x, y}, incl_intro 30. 32. 1 ⊢ ⋂{x, y} = x ∩ y, incl_antisym 12 31. Intersection_pair_set. ⊢ set x ∧ set y → ⋂{x, y} = x ∩ y, subj_intro 32.
Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.