Proof 01. 1 ⊢ x ∈ UnivCl, hypo. 02. 1 ⊢ set x, set_intro 1. 03. ⊢ x ∈ A ∨ ¬x ∈ A, lem. 04. 4 ⊢ x ∈ A, hypo. 05. 4 ⊢ x ∈ A ∪ compl A, union_introl 4. 06. 6 ⊢ ¬x ∈ A, hypo. 07. 1, 6 ⊢ x ∈ compl A, compl_intro 2 6. 08. 1, 6 ⊢ x ∈ A ∪ compl A, union_intror 7. 09. 1 ⊢ x ∈ A ∪ compl A, disj_elim 3 5 8. 10. ⊢ x ∈ UnivCl → x ∈ A ∪ compl A, subj_intro 9. 11. ⊢ ∀x. x ∈ UnivCl → x ∈ A ∪ compl A, uq_intro 10. 12. ⊢ UnivCl ⊆ A ∪ compl A, incl_intro 11. 13. ⊢ A ∪ compl A ⊆ UnivCl, UnivCl_is_greatest. union_compl. ⊢ A ∪ compl A = UnivCl, incl_antisym 13 12.
Dependencies
The given proof depends on five axioms:
comp, eq_refl, eq_subst, ext, lem.