Proof let inductive A ↔ ∅ ∈ A ∧ (∀n. n ∈ A → n ∪ {n} ∈ A). 01. ⊢ ∃A. set A ∧ inductive A, infinity. 02. 2 ⊢ set A ∧ inductive A, hypo. 03. 2 ⊢ set A, conj_eliml 2. 04. 2 ⊢ inductive A, conj_elimr 2. 05. 2 ⊢ A ∈ {A | inductive A}, comp_intro 3 4. 06. 2 ⊢ onat ⊆ A, Intersection_is_lower_bound onat_eq 5. 07. 2 ⊢ set onat, subset 6 3. onat_is_set. ⊢ set onat, ex_elim 1 7.
Dependencies
The given proof depends on four axioms:
comp, eq_subst, infinity, subset.