Proof 01. 1 ⊢ x ∈ dom (S ∘ R), hypo. 02. 1 ⊢ ∃z. (x, z) ∈ S ∘ R, dom_elim 1. 03. 3 ⊢ (x, z) ∈ S ∘ R, hypo. 04. 3 ⊢ ∃y. (x, y) ∈ R, composition_elimr 3. 05. 5 ⊢ (x, y) ∈ R, hypo. 06. 5 ⊢ x ∈ dom R, dom_intro 5. 07. 3 ⊢ x ∈ dom R, ex_elim 4 6. 08. 1 ⊢ x ∈ dom R, ex_elim 2 7. 09. ⊢ x ∈ dom (S ∘ R) → x ∈ dom R, subj_intro 8. 10. ⊢ ∀x. x ∈ dom (S ∘ R) → x ∈ dom R, uq_intro 9. dom_composition. ⊢ dom (S ∘ R) ⊆ dom R, incl_intro 10.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.