Theorem isub_zero

Theorem. isub_zero
a ∈ ℤ → a - 0 = a
Proof
isub_zero. ⊢ a ∈ ℤ → a - 0 = a,
  pred_restr int_incl_in_real rsub_zero.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, radd_neutr.