Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ ¬a = 0, hypo. 03. 3 ⊢ 1/a = 0, hypo. 04. 3 ⊢ a⋅(1/a) = a⋅0, eq_cong 3, f t = a⋅t. 05. 1, 2 ⊢ a⋅(1/a) = 1, rmul_reci_cancel 1 2. 06. 1, 2, 3 ⊢ a⋅0 = 1, eq_trans_ll 4 5. 07. 1 ⊢ a⋅0 = 0, rmul_rzero 1. 08. 1, 2, 3 ⊢ 0 = 1, eq_trans_ll 7 6. 09. ⊢ ¬0 = 1, calc. 10. 1, 2, 3 ⊢ ⊥, neg_elim 9 8. 11. 1, 2 ⊢ ¬1/a = 0, neg_intro 10. rreci_non_zero. ⊢ a ∈ ℝ → ¬a = 0 → ¬1/a = 0, subj_intro_ii 11.
Dependencies
The given proof depends on 14 axioms:
eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rinv_closed, rmul_closed, rmul_comm, rmul_distl_add, rmul_inv, rmul_neutr, rneg_closed.