Theorem iadd_comm

Theorem. iadd_comm
a ∈ ℤ → b ∈ ℤ → a + b = b + a
Proof
iadd_comm. ⊢ a ∈ ℤ → b ∈ ℤ → a + b = b + a,
  pred_ii_restr int_incl_in_real radd_comm.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, radd_comm.