Proof 01. 1 ⊢ set a, hypo. 02. 2 ⊢ set b, hypo. 03. 3 ⊢ (x, y1) ∈ {(a, b)}, hypo. 04. 4 ⊢ (x, y2) ∈ {(a, b)}, hypo. 05. 1, 2 ⊢ set (a, b), set_pair 1 2. 06. 1, 2, 3 ⊢ (x, y1) = (a, b), sg_elim 5 3. 07. 1, 2, 4 ⊢ (x, y2) = (a, b), sg_elim 5 4. 08. 1, 2, 3 ⊢ (a, b) = (x, y1), eq_symm 6. 09. 1, 2, 4 ⊢ (a, b) = (x, y2), eq_symm 7. 10. 1, 2, 3 ⊢ a = x ∧ b = y1, pair_property 1 2 8. 11. 1, 2, 4 ⊢ a = x ∧ b = y2, pair_property 1 2 9. 12. 1, 2, 3 ⊢ b = y1, conj_elimr 10. 13. 1, 2, 4 ⊢ b = y2, conj_elimr 11. 14. 1, 2, 3 ⊢ y1 = b, eq_symm 12. 15. 1, 2, 3, 4 ⊢ y1 = y2, eq_trans 14 13. 16. 1, 2 ⊢ (x, y1) ∈ {(a, b)} → (x, y2) ∈ {(a, b)} → y1 = y2, subj_intro_ii 15. 17. 1, 2 ⊢ ∀y2. (x, y1) ∈ {(a, b)} → (x, y2) ∈ {(a, b)} → y1 = y2, uq_intro 16. 18. 1, 2 ⊢ ∀y1. ∀y2. (x, y1) ∈ {(a, b)} → (x, y2) ∈ {(a, b)} → y1 = y2, uq_intro 17. 19. 1, 2 ⊢ ∀x. ∀y1. ∀y2. (x, y1) ∈ {(a, b)} → (x, y2) ∈ {(a, b)} → y1 = y2, uq_intro 18. 20. 1, 2 ⊢ relation {(a, b)}, sg_relation 1 2. 21. 1, 2 ⊢ function {(a, b)}, function_intro 20 19. sg_function. ⊢ set a → set b → function {(a, b)}, subj_intro_ii 21.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.