Proof 01. 1 ⊢ set a, hypo. 02. 2 ⊢ set b, hypo. 03. 1, 2 ⊢ set (a, b), set_pair 1 2. 04. 4 ⊢ t ∈ {(a, b)}, hypo. 05. 1, 2, 4 ⊢ t = (a, b), sg_elim 3 4. 06. 1, 2, 4 ⊢ ∃y. t = (a, y), ex_intro 5. 07. 1, 2, 4 ⊢ ∃x. ∃y. t = (x, y), ex_intro 6. 08. 1, 2 ⊢ t ∈ {(a, b)} → ∃x. ∃y. t = (x, y), subj_intro 7. 09. 1, 2 ⊢ ∀t. t ∈ {(a, b)} → ∃x. ∃y. t = (x, y), uq_intro 8. 10. 1, 2 ⊢ relation {(a, b)}, relation_fold 9. sg_relation. ⊢ set a → set b → relation {(a, b)}, subj_intro_ii 10.
Dependencies
The given proof depends on six axioms:
comp, eq_refl, eq_subst, ext, pairing, union.