The "triangle inequality" for absolute values.
Proof sketch
In general, we have x ≤ |x| and y ≤ |y|, thus x + y ≤ |x| + |y|.
Furthermore, in general, we have -x ≤ |x| and -y ≤ |y|, thus -|x| ≤ x
and -|y| ≤ y, and therefore
-(|x| + |y|) ≤ x + y.
Thus |x + y| ≤ |x| + |y| by rabs_bounded. q.e.d.
Proof 01. 1 ⊢ x ∈ ℝ, hypo. 02. 2 ⊢ y ∈ ℝ, hypo. 03. 1 ⊢ abs x ∈ ℝ, rabs_closed 1. 04. 2 ⊢ abs y ∈ ℝ, rabs_closed 2. 05. 1 ⊢ x ≤ abs x, rabs_ge_arg 1. 06. 2 ⊢ y ≤ abs y, rabs_ge_arg 2. 07. 1, 2 ⊢ x + y ≤ abs x + abs y, rle_add 1 2 3 4 5 6. 09. 1 ⊢ -x ≤ abs x, rabs_ge_neg_arg 1. 10. 2 ⊢ -y ≤ abs y, rabs_ge_neg_arg 2. 11. 1 ⊢ -x ∈ ℝ, rneg_closed 1. 12. 2 ⊢ -y ∈ ℝ, rneg_closed 2. 13. 1 ⊢ -abs x ≤ -(-x), rle_neg_swaps 11 3 9. 14. 2 ⊢ -abs y ≤ -(-y), rle_neg_swaps 12 4 10. 15. 1 ⊢ -(-x) = x, rneg_involution 1. 16. 2 ⊢ -(-y) = y, rneg_involution 2. 17. 1 ⊢ -abs x ≤ x, le_eq_trans 13 15. 18. 2 ⊢ -abs y ≤ y, le_eq_trans 14 16. 19. 1 ⊢ -abs x ∈ ℝ, rneg_closed 3. 20. 2 ⊢ -abs y ∈ ℝ, rneg_closed 4. 21. 1, 2 ⊢ -abs x + -abs y ≤ x + y, rle_add 19 20 1 2 17 18. 22. 1, 2 ⊢ -(abs x + abs y) = -abs x + -abs y, rneg_dist_add 3 4. 23. 1, 2 ⊢ -(abs x + abs y) ≤ x + y, eq_le_trans 22 21. 24. 1, 2 ⊢ abs x + abs y ∈ ℝ, radd_closed 3 4. 25. 1, 2 ⊢ x + y ∈ ℝ, radd_closed 1 2. 26. 1, 2 ⊢ abs (x + y) ≤ abs x + abs y, rabs_bounded 24 25 23 7. rabs_triangle_ineq. ⊢ x ∈ ℝ → y ∈ ℝ → abs (x + y) ≤ abs x + abs y, subj_intro_ii 26.
Dependencies
The given proof depends on 20 axioms:
comp, efq, eq_refl, eq_subst, ext, lem, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rle_compat_add, rle_refl, rle_total, rle_trans, rmul_closed, rmul_comm, rmul_distl_add, rmul_neutr, rneg_closed.