Given A we have (if A then x else y) = x.
Proof let M = {u | A ∧ u = x ∨ ¬A ∧ u = y}. 01. 1 ⊢ set x, hypo. 02. 2 ⊢ A, hypo. 03. 3 ⊢ u ∈ M, hypo. 04. 3 ⊢ A ∧ u = x ∨ ¬A ∧ u = y, comp_elim 3. 05. 5 ⊢ A ∧ u = x, hypo. 06. 5 ⊢ u = x, conj_elimr 5. 07. 7 ⊢ ¬A ∧ u = y, hypo. 08. 7 ⊢ ¬A, conj_eliml 7. 09. 2, 7 ⊢ ⊥, neg_elim 8 2. 10. 2, 7 ⊢ u = x, efq 9. 11. 2, 3 ⊢ u = x, disj_elim 4 6 10. 12. 1, 2, 3 ⊢ u ∈ {x}, sg_intro 1 11. 13. 1, 2 ⊢ u ∈ M → u ∈ {x}, subj_intro 12. 14. 14 ⊢ u ∈ {x}, hypo. 15. 1, 14 ⊢ u = x, sg_elim 1 14. 16. 1, 2, 14 ⊢ A ∧ u = x, conj_intro 2 15. 17. 1, 2, 14 ⊢ A ∧ u = x ∨ ¬A ∧ u = y, disj_introl 16. 18. 14 ⊢ set u, set_intro 14. 19. 1, 2, 14 ⊢ u ∈ M, comp_intro 18 17. 20. 1, 2 ⊢ u ∈ {x} → u ∈ M, subj_intro 19. 21. 1, 2 ⊢ u ∈ M ↔ u ∈ {x}, bij_intro 13 20. 22. 1, 2 ⊢ ∀u. u ∈ M ↔ u ∈ {x}, uq_intro 21. 23. 1, 2 ⊢ M = {x}, ext 22. 24. 1, 2 ⊢ ⋂M = ⋂{x}, eq_cong 23, f t = ⋂t. 25. 1 ⊢ ⋂{x} = x, Intersection_sg 1. 26. 1, 2 ⊢ if A x y = ⋂{x}, eq_trans cond_eq 24. 27. 1, 2 ⊢ if A x y = x, eq_trans 26 25. cond_eql. ⊢ set x → A → if A x y = x, subj_intro_ii 27.
Dependencies
The given proof depends on five axioms:
comp, efq, eq_refl, eq_subst, ext.