Proof 01. 1 ⊢ a ∈ ℤ, hypo. 02. 2 ⊢ b ∈ ℤ, hypo. 03. 2 ⊢ -b ∈ ℤ, ineg_closed 2. 04. 1, 2 ⊢ a + (-b) ∈ ℤ, iadd_closed 1 3. 05. ⊢ a - b = a + (-b), rsub_eq. 06. 1, 2 ⊢ a - b ∈ ℤ, eq_subst_rev 5 4, P t ↔ t ∈ ℤ. isub_closed. ⊢ a ∈ ℤ → b ∈ ℤ → a - b ∈ ℤ, subj_intro_ii 6.
Dependencies
The given proof depends on 16 axioms:
comp, eq_refl, eq_subst, ext, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, real_is_set, rmul_closed, rmul_comm, rmul_distl_add, rmul_neutr, rneg_closed, subset.