Proof 01. 1 ⊢ set a, hypo. 02. 2 ⊢ set b, hypo. 03. 3 ⊢ ¬a = b, hypo. 04. 4 ⊢ x ∈ {a} ∩ {b}, hypo. 05. 4 ⊢ x ∈ {a}, intersection_eliml 4. 06. 4 ⊢ x ∈ {b}, intersection_elimr 4. 07. 1, 4 ⊢ x = a, sg_elim 1 5. 08. 1, 4 ⊢ a = x, eq_symm 7. 09. 2, 4 ⊢ x = b, sg_elim 2 6. 10. 1, 2, 4 ⊢ a = b, eq_trans 8 9. 11. 1, 2, 3, 4 ⊢ ⊥, neg_elim 3 10. 12. 1, 2, 3, 4 ⊢ x ∈ ∅, efq 11. 13. 1, 2, 3 ⊢ x ∈ {a} ∩ {b} → x ∈ ∅, subj_intro 12. 14. 1, 2, 3 ⊢ ∀x. x ∈ {a} ∩ {b} → x ∈ ∅, uq_intro 13. 15. 1, 2, 3 ⊢ {a} ∩ {b} ⊆ ∅, incl_intro 14. 16. ⊢ ∅ ⊆ {a} ∩ {b}, empty_set_is_least. 17. 1, 2, 3 ⊢ {a} ∩ {b} = ∅, incl_antisym 15 16. disjoint_sg_from_neq. ⊢ set a → set b → ¬a = b → {a} ∩ {b} = ∅, subj_intro_iii 17.
Dependencies
The given proof depends on five axioms:
comp, efq, eq_refl, eq_subst, ext.