Proof let inductive A ↔ ∅ ∈ A ∧ (∀n. n ∈ A → n ∪ {n} ∈ A). 01. 1 ⊢ n ∈ onat, hypo. 02. 2 ⊢ A ∈ {A | inductive A}, hypo. 03. 2 ⊢ ∅ ∈ A ∧ ∀n. n ∈ A → n ∪ {n} ∈ A, comp_elim 2. 04. 2 ⊢ ∀n. n ∈ A → n ∪ {n} ∈ A, conj_elimr 3. 05. 2 ⊢ onat ⊆ A, Intersection_is_lower_bound onat_eq 2. 06. 1, 2 ⊢ n ∈ A, incl_elim 5 1. 07. 1, 2 ⊢ n ∪ {n} ∈ A, uq_bounded_elim 4 6. 08. 1, 2 ⊢ succ n ∈ A, eq_subst_rev succ_eq 7, P x ↔ x ∈ A. 09. 1 ⊢ A ∈ {A | inductive A} → succ n ∈ A, subj_intro 8. 10. 1 ⊢ ∀A. A ∈ {A | inductive A} → succ n ∈ A, uq_intro 9. 11. 1 ⊢ set n, set_intro 1. 12. 1 ⊢ set (succ n), succ_is_set 11. 13. 1 ⊢ succ n ∈ ⋂{A | inductive A}, Intersection_intro 12 10. 14. 1 ⊢ succ n ∈ onat, eq_subst_rev onat_eq 13, P x ↔ succ n ∈ x. succ_in_onat. ⊢ n ∈ onat → succ n ∈ onat, subj_intro 14.
Dependencies
The given proof depends on six axioms:
comp, eq_refl, eq_subst, ext, pairing, union.