Theorem nmul_compatl_neg

Theorem. nmul_compatl_neg
a ∈ ℕ → b ∈ ℕ → -(a⋅b) = (-a)⋅b
Proof
nmul_compatl_neg. ⊢ a ∈ ℕ → b ∈ ℕ → -(a⋅b) = (-a)⋅b,
  pred_ii_restr nat_incl_in_real rmul_compatl_neg.

Dependencies
The given proof depends on 13 axioms:
comp, eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, real_is_set, rmul_closed, rmul_comm, rmul_distl_add, rneg_closed.