Proof 01. 1 ⊢ x ∈ inv_img R B, hypo. 02. 1 ⊢ ∃y. y ∈ B ∧ (x, y) ∈ R, inv_img_elim 1. 03. 3 ⊢ y ∈ B ∧ (x, y) ∈ R, hypo. 04. 3 ⊢ (x, y) ∈ R, conj_elimr 3. 05. 3 ⊢ x ∈ dom R, dom_intro 4. 06. 1 ⊢ x ∈ dom R, ex_elim 2 5. 07. ⊢ x ∈ inv_img R B → x ∈ dom R, subj_intro 6. 08. ⊢ ∀x. x ∈ inv_img R B → x ∈ dom R, uq_intro 7. inv_img_incl_in_dom. ⊢ inv_img R B ⊆ dom R, incl_intro 8.
Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.