Proof 01. 1 ⊢ a ∈ ℕ, hypo. 02. 1 ⊢ a⋅0 = 0, nmul_rzero 1. 03. 1 ⊢ a⋅0 ∈ ℕ, eq_subst_rev 2 zero_in_nat, P t ↔ t ∈ ℕ. 04. 4 ⊢ n ∈ ℕ, hypo. 05. 5 ⊢ a⋅n ∈ ℕ, hypo. 06. 1, 5 ⊢ a⋅n + a ∈ ℕ, nadd_closed 5 1. 07. 1 ⊢ a⋅1 = a, nmul_neutr 1. 08. 1 ⊢ a⋅n + a⋅1 = a⋅n + a, eq_cong 7, f t = a⋅n + t. 09. ⊢ 1 ∈ ℕ, calc. 10. 1, 4 ⊢ a⋅(n + 1) = a⋅n + a⋅1, nmul_distl_add 1 4 9. 11. 1, 4 ⊢ a⋅(n + 1) = a⋅n + a, eq_trans 10 8. 12. 1, 4, 5 ⊢ a⋅(n + 1) ∈ ℕ, eq_subst_rev 11 6, P t ↔ t ∈ ℕ. 13. 1 ⊢ n ∈ ℕ → a⋅n ∈ ℕ → a⋅(n + 1) ∈ ℕ, subj_intro_ii 12. 14. 1 ⊢ ∀n. n ∈ ℕ → a⋅n ∈ ℕ → a⋅(n + 1) ∈ ℕ, uq_intro 13. 15. 1 ⊢ ∀n. n ∈ ℕ → a⋅n ∈ ℕ, nat_induction 3 14, P n ↔ a⋅n ∈ ℕ. 16. 16 ⊢ b ∈ ℕ, hypo. 17. 1, 16 ⊢ a⋅b ∈ ℕ, uq_bounded_elim 15 16. nmul_closed. ⊢ a ∈ ℕ → b ∈ ℕ → a⋅b ∈ ℕ, subj_intro_ii 17.
Dependencies
The given proof depends on 15 axioms:
comp, eq_refl, eq_subst, ext, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, real_is_set, rmul_closed, rmul_distl_add, rmul_neutr, rneg_closed, subset.