Theorem nmul_rzero

Theorem. nmul_rzero
a ∈ ℕ → a⋅0 = 0
Proof
nmul_rzero. ⊢ a ∈ ℕ → a⋅0 = 0,
  pred_restr nat_incl_in_real rmul_rzero.

Dependencies
The given proof depends on 12 axioms:
comp, eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, real_is_set, rmul_closed, rmul_distl_add, rneg_closed.