Theorem univ_closed_family_union

Theorem. univ_closed_family_union
univ U → I ∈ U → map x I U → ⋃(img x I) ∈ U
Proof
01. 1 ⊢ univ U, hypo.
02. 1 ⊢ ∀I. ∀x. I ∈ U → map x I U → ⋃(img x I) ∈ U,
  lsubj_conj_elimr univ_equi 1.
03. 1 ⊢ ∀x. I ∈ U → map x I U → ⋃(img x I) ∈ U, uq_elim 2.
04. 1 ⊢ I ∈ U → map x I U → ⋃(img x I) ∈ U, uq_elim 3.
univ_closed_family_union. ⊢ univ U → I ∈ U → map x I U →
  ⋃(img x I) ∈ U, subj_intro 4.