Proof let h A = X \ img g (Y \ img f A). let Gh = {t | ∃A. A ∈ power X ∧ t = (A, h A)}. 01. 1 ⊢ set X, hypo. 02. 2 ⊢ rng g ⊆ X, hypo. 03. ⊢ Gh = Gh, eq_refl. 04. 4 ⊢ A ∈ power X, hypo. 05. ⊢ h A ⊆ X, diff_incl. 06. 1 ⊢ set (h A), subset 5 1. 07. 1 ⊢ h A ∈ power X, power_intro 6 5. 08. 1, 4 ⊢ h A ∈ power X, wk 7. 09. 1 ⊢ A ∈ power X → h A ∈ power X, subj_intro 8. 10. 1 ⊢ ∀A. A ∈ power X → h A ∈ power X, uq_intro 9. 11. 11 ⊢ A2 ⊆ X, hypo. 12. 12 ⊢ A1 ⊆ A2, hypo. 13. 12 ⊢ img f A1 ⊆ img f A2, img_incl 12. 14. 12 ⊢ Y \ (img f A2) ⊆ Y \ (img f A1), incl_contraposition 13. 15. 12 ⊢ img g (Y \ (img f A2)) ⊆ img g (Y \ (img f A1)), img_incl 14. 16. 12 ⊢ h A1 ⊆ h A2, incl_contraposition 15. 17. 11, 12 ⊢ A1 ⊆ X, incl_trans 12 11. 18. 1, 11, 12 ⊢ set A1, subset 17 1. 19. 1, 11 ⊢ set A2, subset 11 1. 20. 1, 11, 12 ⊢ A1 ∈ power X, power_intro 18 17. 21. 1, 11 ⊢ A2 ∈ power X, power_intro 19 11. 22. 1, 11, 12 ⊢ app Gh A1 = h A1, map_from_term_app 3 10 20. 23. 1, 11 ⊢ app Gh A2 = h A2, map_from_term_app 3 10 21. 24. 1, 11, 12 ⊢ app Gh A1 ⊆ h A2, eq_subst_rev 22 16, P t ↔ t ⊆ h A2. 25. 1, 11, 12 ⊢ app Gh A1 ⊆ app Gh A2, eq_subst_rev 23 24, P t ↔ app Gh A1 ⊆ t. 26. 1 ⊢ A2 ⊆ X → A1 ⊆ A2 → app Gh A1 ⊆ app Gh A2, subj_intro_ii 25. 27. 1 ⊢ ∀A2. A2 ⊆ X → A1 ⊆ A2 → app Gh A1 ⊆ app Gh A2, uq_intro 26. 28. 1 ⊢ ∀A1. ∀A2. A2 ⊆ X → A1 ⊆ A2 → app Gh A1 ⊆ app Gh A2, uq_intro 27. 29. 1 ⊢ map Gh (power X) (power X), map_from_term 3 10. 30. 1 ⊢ ∃A. A ⊆ X ∧ app Gh A = A ∧ (∀U. U ⊆ X → app Gh U = U → A ⊆ U), incl_Knaster_Tarski_least 1 29 28. 31. 31 ⊢ A ⊆ X ∧ app Gh A = A ∧ (∀U. U ⊆ X → app Gh U = U → A ⊆ U), hypo. 32. 31 ⊢ A ⊆ X, conj_elimll 31. 33. 31 ⊢ app Gh A = A, conj_elimlr 31. 34. 1, 31 ⊢ set A, subset 32 1. 35. 1, 31 ⊢ A ∈ power X, power_intro 34 32. 36. 1, 31 ⊢ app Gh A = h A, map_from_term_app 3 10 35. 37. 1, 31 ⊢ h A = A, eq_trans_ll 36 33. 38. ⊢ img g (Y \ img f A) ⊆ rng g, img_incl_in_rng. 39. 2 ⊢ img g (Y \ img f A) ⊆ X, incl_trans 38 2. 40. 2 ⊢ X \ h A = img g (Y \ img f A), diff_is_involution 39. 41. 1, 2, 31 ⊢ X \ A = img g (Y \ img f A), eq_subst 37 40, P t ↔ X \ t = img g (Y \ img f A). 42. ⊢ img f A = img f A, eq_refl. 43. 1, 2, 31 ⊢ img f A = img f A ∧ X \ A = img g (Y \ img f A), conj_intro 42 41. 44. 1, 2, 31 ⊢ ∃B. img f A = B ∧ X \ A = img g (Y \ B), ex_intro 43. 45. 1, 2, 31 ⊢ ∃A. ∃B. img f A = B ∧ X \ A = img g (Y \ B), ex_intro 44. 46. 1, 2 ⊢ ∃A. ∃B. img f A = B ∧ X \ A = img g (Y \ B), ex_elim 30 45. Banach_decomposition_theorem. ⊢ set X → rng g ⊆ X → ∃A. ∃B. img f A = B ∧ X \ A = img g (Y \ B), subj_intro_ii 46.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.