Theorem Banach_decomposition_theorem

Theorem. Banach_decomposition_theorem
set X → rng g ⊆ X → ∃A. ∃B. img f A = B ∧ X \ A = img g (Y \ B)
Proof
let h A = X \ img g (Y \ img f A).
let Gh = {t | ∃A. A ∈ power X ∧ t = (A, h A)}.
01. 1 ⊢ set X, hypo.
02. 2 ⊢ rng g ⊆ X, hypo.
03. ⊢ Gh = Gh, eq_refl.

04. 4 ⊢ A ∈ power X, hypo.
05. ⊢ h A ⊆ X, diff_incl.
06. 1 ⊢ set (h A), subset 5 1.
07. 1 ⊢ h A ∈ power X, power_intro 6 5.
08. 1, 4 ⊢ h A ∈ power X, wk 7.
09. 1 ⊢ A ∈ power X → h A ∈ power X, subj_intro 8.
10. 1 ⊢ ∀A. A ∈ power X → h A ∈ power X, uq_intro 9.

11. 11 ⊢ A2 ⊆ X, hypo.
12. 12 ⊢ A1 ⊆ A2, hypo.
13. 12 ⊢ img f A1 ⊆ img f A2, img_incl 12.
14. 12 ⊢ Y \ (img f A2) ⊆ Y \ (img f A1), incl_contraposition 13.
15. 12 ⊢ img g (Y \ (img f A2)) ⊆ img g (Y \ (img f A1)), img_incl 14.
16. 12 ⊢ h A1 ⊆ h A2, incl_contraposition 15.

17. 11, 12 ⊢ A1 ⊆ X, incl_trans 12 11.
18. 1, 11, 12 ⊢ set A1, subset 17 1.
19. 1, 11 ⊢ set A2, subset 11 1.
20. 1, 11, 12 ⊢ A1 ∈ power X, power_intro 18 17.
21. 1, 11 ⊢ A2 ∈ power X, power_intro 19 11.
22. 1, 11, 12 ⊢ app Gh A1 = h A1, map_from_term_app 3 10 20.
23. 1, 11 ⊢ app Gh A2 = h A2, map_from_term_app 3 10 21.

24. 1, 11, 12 ⊢ app Gh A1 ⊆ h A2,
  eq_subst_rev 22 16, P t ↔ t ⊆ h A2.
25. 1, 11, 12 ⊢ app Gh A1 ⊆ app Gh A2,
  eq_subst_rev 23 24, P t ↔ app Gh A1 ⊆ t.
26. 1 ⊢ A2 ⊆ X → A1 ⊆ A2 →
  app Gh A1 ⊆ app Gh A2, subj_intro_ii 25.
27. 1 ⊢ ∀A2. A2 ⊆ X → A1 ⊆ A2 →
  app Gh A1 ⊆ app Gh A2, uq_intro 26.
28. 1 ⊢ ∀A1. ∀A2. A2 ⊆ X → A1 ⊆ A2 →
  app Gh A1 ⊆ app Gh A2, uq_intro 27.
29. 1 ⊢ map Gh (power X) (power X), map_from_term 3 10.
30. 1 ⊢ ∃A. A ⊆ X ∧ app Gh A = A ∧
  (∀U. U ⊆ X → app Gh U = U → A ⊆ U),
  incl_Knaster_Tarski_least 1 29 28.

31. 31 ⊢ A ⊆ X ∧ app Gh A = A ∧
  (∀U. U ⊆ X → app Gh U = U → A ⊆ U), hypo.
32. 31 ⊢ A ⊆ X, conj_elimll 31.
33. 31 ⊢ app Gh A = A, conj_elimlr 31.
34. 1, 31 ⊢ set A, subset 32 1.
35. 1, 31 ⊢ A ∈ power X, power_intro 34 32.
36. 1, 31 ⊢ app Gh A = h A, map_from_term_app 3 10 35.
37. 1, 31 ⊢ h A = A, eq_trans_ll 36 33.
38. ⊢ img g (Y \ img f A) ⊆ rng g, img_incl_in_rng.
39. 2 ⊢ img g (Y \ img f A) ⊆ X, incl_trans 38 2.
40. 2 ⊢ X \ h A = img g (Y \ img f A), diff_is_involution 39.
41. 1, 2, 31 ⊢ X \ A = img g (Y \ img f A),
  eq_subst 37 40, P t ↔ X \ t = img g (Y \ img f A).
42. ⊢ img f A = img f A, eq_refl.
43. 1, 2, 31 ⊢ img f A = img f A ∧
  X \ A = img g (Y \ img f A), conj_intro 42 41.
44. 1, 2, 31 ⊢ ∃B. img f A = B ∧
  X \ A = img g (Y \ B), ex_intro 43.
45. 1, 2, 31 ⊢ ∃A. ∃B. img f A = B ∧
  X \ A = img g (Y \ B), ex_intro 44.
46. 1, 2 ⊢ ∃A. ∃B. img f A = B ∧
  X \ A = img g (Y \ B), ex_elim 30 45.
Banach_decomposition_theorem. ⊢ set X → rng g ⊆ X →
  ∃A. ∃B. img f A = B ∧ X \ A = img g (Y \ B),
  subj_intro_ii 46.

Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.