Proof 01. 1 ⊢ f = {t | ∃x. x ∈ X ∧ t = (x, y x)}, hypo. 02. 2 ⊢ a ∈ dom f, hypo. 03. 2 ⊢ ∃b. (a, b) ∈ f, dom_elim 2. 04. 4 ⊢ (a, b) ∈ f, hypo. 05. 1, 4 ⊢ (a, b) ∈ {t | ∃x. x ∈ X ∧ t = (x, y x)}, eq_subst 1 4, P u ↔ (a, b) ∈ u. 06. 1, 4 ⊢ ∃x. x ∈ X ∧ (a, b) = (x, y x), comp_elim 5. 07. 7 ⊢ x ∈ X ∧ (a, b) = (x, y x), hypo. 08. 7 ⊢ x ∈ X, conj_eliml 7. 09. 7 ⊢ (a, b) = (x, y x), conj_elimr 7. 10. 4 ⊢ set (a, b), set_intro 4. 11. 4 ⊢ set a, setl_from_pair 10. 12. 4 ⊢ set b, setr_from_pair 10. 13. 4, 7 ⊢ a = x ∧ b = y x, pair_property 11 12 9. 14. 4, 7 ⊢ a = x, conj_eliml 13. 15. 4, 7 ⊢ a ∈ X, eq_subst_rev 14 8, P u ↔ u ∈ X. 16. 1, 4 ⊢ a ∈ X, ex_elim 6 15. 17. 1, 2 ⊢ a ∈ X, ex_elim 3 16. 18. 1 ⊢ a ∈ dom f → a ∈ X, subj_intro 17. 19. 19 ⊢ a ∈ X, hypo. 20. ⊢ (a, y a) = (a, y a), eq_refl. 21. 19 ⊢ a ∈ X ∧ (a, y a) = (a, y a), conj_intro 19 20. 22. 19 ⊢ ∃x. x ∈ X ∧ (a, y a) = (x, y x), ex_intro 21. 23. 19 ⊢ set a, set_intro 19. 24. 24 ⊢ ∀x. x ∈ X → set (y x), hypo. 25. 24, 19 ⊢ set (y a), uq_bounded_elim 24 19. 26. 24, 19 ⊢ set (a, y a), set_pair 23 25. 27. 24, 19 ⊢ (a, y a) ∈ {t | ∃x. x ∈ X ∧ t = (x, y x)}, comp_intro 26 22, P u ↔ (∃x. x ∈ X ∧ u = (x, y x)). 28. 1, 24, 19 ⊢ (a, y a) ∈ f, eq_subst_rev 1 27, P u ↔ (a, y a) ∈ u. 29. 1, 24, 19 ⊢ a ∈ dom f, dom_intro 28. 30. 1, 24 ⊢ a ∈ X → a ∈ dom f, subj_intro 29. 31. 1, 24 ⊢ a ∈ dom f ↔ a ∈ X, bij_intro 18 30. 32. 1, 24 ⊢ ∀x. x ∈ dom f ↔ x ∈ X, uq_intro 31. 33. 1, 24 ⊢ dom f = X, ext 32. dom_from_term. ⊢ f = {t | ∃x. x ∈ X ∧ t = (x, y x)} → (∀x. x ∈ X → set (y x)) → dom f = X, subj_intro_ii 33.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.