Theorem clop_monotony

Theorem. clop_monotony
closure_operator H U → X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y
Proof
01. 1 ⊢ closure_operator H U, hypo.
02. 1 ⊢ ∀X. ∀Y. X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y,
  lsubj_conj_elimlr clop_equi 1.
03. 1 ⊢ ∀Y. X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y, uq_elim 2.
04. 1 ⊢ X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y, uq_elim 3.
clop_monotony. ⊢ closure_operator H U →
  X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y, subj_intro 4.