Proof 01. 1 ⊢ z ∈ rng (S ∘ R), hypo. 02. 1 ⊢ ∃x. (x, z) ∈ S ∘ R, rng_elim 1. 03. 3 ⊢ (x, z) ∈ S ∘ R, hypo. 04. 3 ⊢ ∃y. (y, z) ∈ S, composition_eliml 3. 05. 5 ⊢ (y, z) ∈ S, hypo. 06. 5 ⊢ z ∈ rng S, rng_intro 5. 07. 3 ⊢ z ∈ rng S, ex_elim 4 6. 08. 1 ⊢ z ∈ rng S, ex_elim 2 7. 09. ⊢ z ∈ rng (S ∘ R) → z ∈ rng S, subj_intro 8. 10. ⊢ ∀z. z ∈ rng (S ∘ R) → z ∈ rng S, uq_intro 9. rng_composition. ⊢ rng (S ∘ R) ⊆ rng S, incl_intro 10.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.