Proof 01. 1 ⊢ (a, c) ∈ S ∘ R, hypo. 02. ⊢ S ∘ R = {t | ∃x. ∃y. ∃z. t = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S}, composition_eq. 03. 1 ⊢ (a, c) ∈ {t | ∃x. ∃y. ∃z. t = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S}, eq_subst 2 1, P u ↔ (a, c) ∈ u. 04. 1 ⊢ ∃x. ∃y. ∃z. (a, c) = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S, comp_elim 3. 05. 5 ⊢ ∃y. ∃z. (a, c) = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S, hypo. 06. 6 ⊢ ∃z. (a, c) = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S, hypo. 07. 7 ⊢ (a, c) = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S, hypo. 08. 7 ⊢ (a, c) = (x, z), conj_elimll 7. 09. 1 ⊢ set (a, c), set_intro 1. 10. 1 ⊢ set a, setl_from_pair 9. 11. 1 ⊢ set c, setr_from_pair 9. 12. 1, 7 ⊢ a = x ∧ c = z, pair_property 10 11 8. 13. 1, 7 ⊢ a = x, conj_eliml 12. 14. 1, 7 ⊢ c = z, conj_elimr 12. 15. 7 ⊢ (x, y) ∈ R, conj_elimlr 7. 16. 1, 7 ⊢ (a, y) ∈ R, eq_subst_rev 13 15. 17. 1, 7 ⊢ ∃y. (a, y) ∈ R, ex_intro 16. 18. 1, 6 ⊢ ∃y. (a, y) ∈ R, ex_elim 6 17. 19. 1, 5 ⊢ ∃y. (a, y) ∈ R, ex_elim 5 18. 20. 1 ⊢ ∃y. (a, y) ∈ R, ex_elim 4 19. composition_elimr. ⊢ (a, c) ∈ S ∘ R → ∃y. (a, y) ∈ R, subj_intro 20. 21. 7 ⊢ (y, z) ∈ S, conj_elimr 7. 22. 1, 7 ⊢ (y, c) ∈ S, eq_subst_rev 14 21. 23. 1, 7 ⊢ ∃y. (y, c) ∈ S, ex_intro 22. 24. 1, 6 ⊢ ∃y. (y, c) ∈ S, ex_elim 6 23. 25. 1, 5 ⊢ ∃y. (y, c) ∈ S, ex_elim 5 24. 26. 1 ⊢ ∃y. (y, c) ∈ S, ex_elim 4 25. composition_eliml. ⊢ (a, c) ∈ S ∘ R → ∃y. (y, c) ∈ S, subj_intro 26.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.