Proof 01. 1 ⊢ wf R X, hypo. 02. 2 ⊢ dom R ⊆ X, hypo. 03. 3 ⊢ ∀x. ∀f. φ x f ∈ Y, hypo. 04. 4 ⊢ F = {A | A ⊆ X × Y ∧ ∀x. x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ A) → (x, φ x (restr g (inv_img R {x}))) ∈ A}, hypo. 05. 5 ⊢ f = ⋂F, hypo. 06. 6 ⊢ x ∈ X, hypo. 07. 6 ⊢ set x, set_intro 6. 08. 3 ⊢ ∀f. φ x f ∈ Y, uq_elim 3. 09. 3 ⊢ φ x f ∈ Y, uq_elim 8. 10. 3 ⊢ set (φ x f), set_intro 9. 11. 3, 6 ⊢ set (x, φ x f), set_pair 7 10. 12. 3, 6 ⊢ set (x, φ x (restr g (inv_img R {x}))), 11. 13. 13 ⊢ A ∈ F, hypo. 14. 14 ⊢ fn_on g (inv_img R {x}), hypo. 15. 4, 13 ⊢ A ∈ {A | A ⊆ X × Y ∧ ∀x. x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ A) → (x, φ x (restr g (inv_img R {x}))) ∈ A}, eq_subst 4 13, P u ↔ A ∈ u. 16. 4, 13 ⊢ A ⊆ X × Y ∧ ∀x. x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ A) → (x, φ x (restr g (inv_img R {x}))) ∈ A, comp_elim 15. 17. 4, 13 ⊢ ∀x. x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ A) → (x, φ x (restr g (inv_img R {x}))) ∈ A, conj_elimr 16. 18. 4, 13 ⊢ x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ A) → (x, φ x (restr g (inv_img R {x}))) ∈ A, uq_elim 17. 19. 4, 6, 13 ⊢ ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ A) → (x, φ x (restr g (inv_img R {x}))) ∈ A, subj_elim 18 6. 20. 4, 6, 13, 14 ⊢ (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ A) → (x, φ x (restr g (inv_img R {x}))) ∈ A, uq_bounded_elim 19 14. 21. 5, 13 ⊢ f ⊆ A, Intersection_is_lower_bound 5 13. 22. 22 ⊢ ∀u. u ∈ inv_img R {x} → (u, app g u) ∈ f, hypo. 23. 22 ⊢ u ∈ inv_img R {x} → (u, app g u) ∈ f, uq_elim 22. 24. 24 ⊢ u ∈ inv_img R {x}, hypo. 25. 22, 24 ⊢ (u, app g u) ∈ f, subj_elim 23 24. 26. 5, 22, 13, 24 ⊢ (u, app g u) ∈ A, incl_elim 21 25. 27. 5, 22, 13 ⊢ u ∈ inv_img R {x} → (u, app g u) ∈ A, subj_intro 26. 28. 5, 22, 13 ⊢ ∀u. u ∈ inv_img R {x} → (u, app g u) ∈ A, uq_intro 27. 29. 4, 5, 6, 22, 14, 13 ⊢ (x, φ x (restr g (inv_img R {x}))) ∈ A, subj_elim 20 28. 30. 4, 5, 6, 22, 14 ⊢ A ∈ F → (x, φ x (restr g (inv_img R {x}))) ∈ A, subj_intro 29. 31. 4, 5, 6, 22, 14 ⊢ ∀A. A ∈ F → (x, φ x (restr g (inv_img R {x}))) ∈ A, uq_intro 30. 32. 3, 4, 5, 6, 22, 14 ⊢ (x, φ x (restr g (inv_img R {x}))) ∈ ⋂F, Intersection_intro 12 31. 33. 3, 4, 5, 6, 14, 22 ⊢ (x, φ x (restr g (inv_img R {x}))) ∈ f, eq_subst_rev 5 32, P u ↔ (x, φ x (restr g (inv_img R {x}))) ∈ u. 34. 3, 4, 5, 6, 14 ⊢ (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ f) → (x, φ x (restr g (inv_img R {x}))) ∈ f, subj_intro 33. 35. 3, 4, 5, 6 ⊢ fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ f) → (x, φ x (restr g (inv_img R {x}))) ∈ f, subj_intro 34. 36. 3, 4, 5, 6 ⊢ ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ f) → (x, φ x (restr g (inv_img R {x}))) ∈ f, uq_intro 35. 37. 3, 4, 5 ⊢ x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ f) → (x, φ x (restr g (inv_img R {x}))) ∈ f, subj_intro 36. 38. 3, 4, 5 ⊢ ∀x. x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ f) → (x, φ x (restr g (inv_img R {x}))) ∈ f, uq_intro 37. 39. 3, 6 ⊢ (x, φ x f) ∈ X × Y, prod_intro 6 9. 40. 40 ⊢ (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ X × Y), hypo. 41. 3, 6, 40 ⊢ (x, φ x f) ∈ X × Y, wk 39. 42. 3, 6 ⊢ (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ X × Y) → (x, φ x f) ∈ X × Y, subj_intro 41. 43. 3, 6, 14 ⊢ (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ X × Y) → (x, φ x f) ∈ X × Y, wk 42. 44. 3, 6 ⊢ fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ X × Y) → (x, φ x f) ∈ X × Y, subj_intro 43. 45. 3, 6 ⊢ ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ X × Y) → (x, φ x f) ∈ X × Y, uq_intro 44. 46. 3 ⊢ x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ X × Y) → (x, φ x f) ∈ X × Y, subj_intro 45. 47. 3 ⊢ ∀x. x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ X × Y) → (x, φ x f) ∈ X × Y, uq_intro 46. 48. ⊢ X × Y ⊆ X × Y, incl_refl. 49. 3 ⊢ X × Y ⊆ X × Y ∧ ∀x. x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ X × Y) → (x, φ x f) ∈ X × Y, conj_intro 48 47. 50. 50 ⊢ set X, hypo. 51. 51 ⊢ set Y, hypo. 52. 50, 51 ⊢ set (X × Y), set_prod 50 51. 53. 50, 51, 3 ⊢ X × Y ∈ {A | A ⊆ X × Y ∧ ∀x. x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ A) → (x, φ x f) ∈ A}, comp_intro 52 49, P A ↔ (A ⊆ X × Y ∧ ∀x. x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ A) → (x, φ x f) ∈ A). 54. 50, 51, 3 ⊢ X × Y ∈ {A | A ⊆ X × Y ∧ ∀x. x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ A) → (x, φ x (restr g (inv_img R {x}))) ∈ A}, 53. 55. 50, 51, 3, 4 ⊢ X × Y ∈ F, eq_subst_rev 4 54, P u ↔ X × Y ∈ u. 56. 50, 51, 3, 4, 5 ⊢ f ⊆ X × Y, Intersection_is_lower_bound 5 55. 57. 50, 51, 3, 4, 5 ⊢ f ⊆ X × Y ∧ ∀x. x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ f) → (x, φ x (restr g (inv_img R {x}))) ∈ f, conj_intro 56 38. 58. 50, 51, 3, 4, 5 ⊢ set f, subset 56 52. 59. 50, 51, 3, 4, 5 ⊢ f ∈ {A | A ⊆ X × Y ∧ ∀x. x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ A) → (x, φ x (restr g (inv_img R {x}))) ∈ A}, comp_intro 58 57. 60. 50, 51, 3, 4, 5 ⊢ f ∈ F, eq_subst_rev 4 59, P u ↔ f ∈ u. 61. 61 ⊢ x ∈ X, hypo. 62. 62 ⊢ ∀u. u ∈ X → (u, x) ∈ R → ∃y0. y0 ∈ Y ∧ ∀y. y0 = y ↔ (u, y) ∈ f, hypo. 63. 63 ⊢ u ∈ inv_img R {x}, hypo. 64. 62 ⊢ u ∈ X → (u, x) ∈ R → ∃y0. y0 ∈ Y ∧ ∀y. y0 = y ↔ (u, y) ∈ f, uq_elim 62. 65. 63 ⊢ ∃a. a ∈ {x} ∧ (u, a) ∈ R, inv_img_elim 63. 66. 66 ⊢ a ∈ {x} ∧ (u, a) ∈ R, hypo. 67. 66 ⊢ a ∈ {x}, conj_eliml 66. 68. 66 ⊢ (u, a) ∈ R, conj_elimr 66. 69. 61 ⊢ set x, set_intro 61. 70. 61, 66 ⊢ a = x, sg_elim 69 67. 71. 61, 66 ⊢ (u, x) ∈ R, eq_subst 70 68, P x ↔ (u, x) ∈ R. 72. 61, 63 ⊢ (u, x) ∈ R, ex_elim 65 71. 73. 66 ⊢ u ∈ dom R, dom_intro 68. 74. 63 ⊢ u ∈ dom R, ex_elim 65 73. 75. 2, 63 ⊢ u ∈ X, incl_elim 2 74. 76. 2, 62, 63 ⊢ (u, x) ∈ R → ∃y0. y0 ∈ Y ∧ ∀y. y0 = y ↔ (u, y) ∈ f, subj_elim 64 75. 77. 2, 61, 62, 63 ⊢ ∃y0. y0 ∈ Y ∧ ∀y. y0 = y ↔ (u, y) ∈ f, subj_elim 76 72. 78. ⊢ y ∈ Y → set y, set_intro. 79. ⊢ ∀y. y ∈ Y → set y, uq_intro 78. 80. 2, 61, 62, 63 ⊢ ∃y0. set y0 ∧ ∀y. y0 = y ↔ (u, y) ∈ f, ex_weaken_conj 79 77. 81. 2, 61, 62, 63 ⊢ ∃y0. set y0 ∧ {y0} = {y | (u, y) ∈ f}, sg_eq_from_ex_uniq 80. 82. 2, 61, 62 ⊢ u ∈ inv_img R {x} → ∃y0. set y0 ∧ ∀y. y0 = y ↔ (u, y) ∈ f, subj_intro 80. 83. 2, 61, 62 ⊢ ∀u. u ∈ inv_img R {x} → ∃y0. set y0 ∧ ∀y. y0 = y ↔ (u, y) ∈ f, uq_intro 82. 84. 50, 51, 3, 4, 5 ⊢ relation f, relation_from_incl 56. 85. 50, 51, 2, 3, 4, 5, 61, 62 ⊢ fn_on f (inv_img R {x}), fn_on_intro 84 83. 86. ⊢ app f u = app f u, eq_refl. 87. 2, 61, 62, 63 ⊢ (u, app f u) ∈ f, app_elim_lemma 81 86. 88. 88 ⊢ y0 ∈ Y ∧ ∀y. y0 = y ↔ (u, y) ∈ f, hypo. 89. 88 ⊢ y0 ∈ Y, conj_eliml 88. 90. 88 ⊢ ∀y. y0 = y ↔ (u, y) ∈ f, conj_elimr 88. 91. 88 ⊢ y0 = app f u ↔ (u, app f u) ∈ f, uq_elim 90. 92. 2, 61, 62, 63, 88 ⊢ y0 = app f u, rsubj_elim 91 87. 93. 2, 61, 62, 63, 88 ⊢ app f u ∈ Y, eq_subst 92 89, P y ↔ y ∈ Y. 94. 2, 61, 62, 63 ⊢ app f u ∈ Y, ex_elim 77 93. 95. 2, 61, 62, 63 ⊢ app f u ∈ Y ∧ (u, app f u) ∈ f, conj_intro 94 87. 96. 2, 61, 62, 63 ⊢ ∃y. y ∈ Y ∧ (u, y) ∈ f, ex_intro 95. 97. 3, 4, 5, 61 ⊢ ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ f) → (x, φ x (restr g (inv_img R {x}))) ∈ f, uq_bounded_elim 38 61. 98. 50, 51, 2, 3, 4, 5, 61, 62 ⊢ (∀u. u ∈ inv_img R {x} → (u, app f u) ∈ f) → (x, φ x (restr f (inv_img R {x}))) ∈ f, uq_bounded_elim 97 85. 99. 2, 61, 62 ⊢ u ∈ inv_img R {x} → (u, app f u) ∈ f, subj_intro 87. 100. 2, 61, 62 ⊢ ∀u. u ∈ inv_img R {x} → (u, app f u) ∈ f, uq_intro 99. 101. 50, 51, 2, 3, 4, 5, 61, 62 ⊢ (x, φ x (restr f (inv_img R {x}))) ∈ f, subj_elim 98 100. 102. 3 ⊢ ∀f. φ x f ∈ Y, uq_elim 3. 103. 3 ⊢ φ x (restr f (inv_img R {x})) ∈ Y, uq_elim 102. 104. 50, 51, 2, 3, 4, 5, 61, 62 ⊢ φ x (restr f (inv_img R {x})) ∈ Y ∧ (x, φ x (restr f (inv_img R {x}))) ∈ f, conj_intro 103 101. 105. 50, 51, 2, 3, 4, 5, 61, 62 ⊢ ∃y. y ∈ Y ∧ (x, y) ∈ f, ex_intro 104. 106. 106 ⊢ (x, y') ∈ f, hypo. 107. 107 ⊢ ¬y' = φ x (restr f (inv_img R {x})), hypo. 108. ⊢ f \ {(x, y')} ⊆ f, diff_incl. 109. 50, 51, 3, 4, 5 ⊢ f \ {(x, y')} ⊆ X × Y, incl_trans 108 56. 110. 110 ⊢ a ∈ X, hypo. 111. 111 ⊢ fn_on g (inv_img R {a}), hypo. 112. 112 ⊢ ∀u. u ∈ inv_img R {a} → (u, app g u) ∈ f \ {(x, y')}, hypo. 113. 113 ⊢ u ∈ inv_img R {a}, hypo. 114. 112, 113 ⊢ (u, app g u) ∈ f \ {(x, y')}, uq_bounded_elim 112 113. 115. 112, 113 ⊢ (u, app g u) ∈ f, diff_eliml 114. 116. 112 ⊢ u ∈ inv_img R {a} → (u, app g u) ∈ f, subj_intro 115. 117. 112 ⊢ ∀u. u ∈ inv_img R {a} → (u, app g u) ∈ f, uq_intro 116. 118. 3, 4, 5, 110 ⊢ ∀g. fn_on g (inv_img R {a}) → (∀u. u ∈ inv_img R {a} → (u, app g u) ∈ f) → (a, φ a (restr g (inv_img R {a}))) ∈ f, uq_bounded_elim 38 110. 119. 3, 4, 5, 110, 111 ⊢ (∀u. u ∈ inv_img R {a} → (u, app g u) ∈ f) → (a, φ a (restr g (inv_img R {a}))) ∈ f, uq_bounded_elim 118 111. 120. 3, 4, 5, 110, 112, 111 ⊢ (a, φ a (restr g (inv_img R {a}))) ∈ f, subj_elim 119 117. 121. 121 ⊢ (a, φ a (restr g (inv_img R {a}))) = (x, y'), hypo. 122. 3 ⊢ ∀f. φ x f ∈ Y, uq_elim 3. 123. 3 ⊢ φ x f ∈ Y, uq_elim 122. 124. 3 ⊢ set (φ x f), set_intro 123. 125. 3 ⊢ set (φ a (restr g (inv_img R {a}))), 124. 126. 110 ⊢ set a, set_intro 110. 127. 3, 110, 121 ⊢ a = x ∧ φ a (restr g (inv_img R {a})) = y', pair_property 126 125 121. 128. 3, 110, 121 ⊢ a = x, conj_eliml 127. 129. 3, 110, 121 ⊢ φ a (restr g (inv_img R {a})) = y', conj_elimr 127. 130. 112 ⊢ u ∈ inv_img R {a} → (u, app g u) ∈ f, subj_intro 115. 131. 3, 110, 121, 112 ⊢ u ∈ inv_img R {x} → (u, app g u) ∈ f, eq_subst 128 130. 132. 3, 110, 112, 121, 63 ⊢ (u, app g u) ∈ f, subj_elim 131 63. 133. 2, 3, 61, 62, 110, 112, 121, 63 ⊢ app g u = app f u, app_intro_lemma 81 132. 134. 2, 3, 61, 62, 110, 112, 121, 63 ⊢ app f u = app g u, eq_symm 133. 135. 2, 3, 61, 62, 110, 112, 121 ⊢ u ∈ inv_img R {x} → app f u = app g u, subj_intro 134. 136. 2, 3, 61, 62, 110, 112, 121 ⊢ ∀u. u ∈ inv_img R {x} → app f u = app g u, uq_intro 135. 137. 3, 110, 121, 111 ⊢ fn_on g (inv_img R {x}), eq_subst 128 111. 138. 50, 51, 2, 3, 4, 5, 61, 62, 110, 112, 121, 111 ⊢ restr f (inv_img R {x}) = restr g (inv_img R {x}), fn_on_extensionality 85 137 136. 139. 3, 110, 121 ⊢ φ x (restr g (inv_img R {x})) = y', eq_subst 128 129. 140. 50, 51, 2, 3, 4, 5, 61, 62, 110, 112, 121, 111 ⊢ φ x (restr f (inv_img R {x})) = y', eq_subst_rev 138 139, P u ↔ φ x u = y'. 141. 50, 51, 2, 3, 4, 5, 61, 62, 110, 112, 121, 111 ⊢ y' = φ x (restr f (inv_img R {x})), eq_symm 140. 142. 50, 51, 2, 3, 4, 5, 61, 62, 107, 110, 112, 111, 121 ⊢ ⊥, neg_elim 107 141. 143. 50, 51, 2, 3, 4, 5, 61, 62, 107, 110, 112, 111 ⊢ ¬(a, φ a (restr g (inv_img R {a}))) = (x, y'), neg_intro 142. 144. 106 ⊢ set (x, y'), set_intro 106. 145. 50, 51, 2, 3, 4, 5, 61, 62, 106, 107, 110, 112, 111 ⊢ ¬(a, φ a (restr g (inv_img R {a}))) ∈ {(x, y')}, sg_neg_intro 144 143. 146. 50, 51, 2, 3, 4, 5, 61, 62, 106, 107, 110, 111, 112 ⊢ (a, φ a (restr g (inv_img R {a}))) ∈ f \ {(x, y')}, diff_intro 120 145. 147. 50, 51, 2, 3, 4, 5, 61, 62, 106, 107, 110 ⊢ fn_on g (inv_img R {a}) → (∀u. u ∈ inv_img R {a} → (u, app g u) ∈ f \ {(x, y')}) → (a, φ a (restr g (inv_img R {a}))) ∈ f \ {(x, y')}, subj_intro_ii 146. 148. 50, 51, 2, 3, 4, 5, 61, 62, 106, 107, 110 ⊢ ∀g. fn_on g (inv_img R {a}) → (∀u. u ∈ inv_img R {a} → (u, app g u) ∈ f \ {(x, y')}) → (a, φ a (restr g (inv_img R {a}))) ∈ f \ {(x, y')}, uq_intro 147. 149. 50, 51, 2, 3, 4, 5, 61, 62, 106, 107 ⊢ a ∈ X → ∀g. fn_on g (inv_img R {a}) → (∀u. u ∈ inv_img R {a} → (u, app g u) ∈ f \ {(x, y')}) → (a, φ a (restr g (inv_img R {a}))) ∈ f \ {(x, y')}, subj_intro 148. 150. 50, 51, 2, 3, 4, 5, 61, 62, 106, 107 ⊢ ∀a. a ∈ X → ∀g. fn_on g (inv_img R {a}) → (∀u. u ∈ inv_img R {a} → (u, app g u) ∈ f \ {(x, y')}) → (a, φ a (restr g (inv_img R {a}))) ∈ f \ {(x, y')}, uq_intro 149. 151. 50, 51, 2, 3, 4, 5, 61, 62, 106, 107 ⊢ f \ {(x, y')} ⊆ X × Y ∧ ∀a. a ∈ X → ∀g. fn_on g (inv_img R {a}) → (∀u. u ∈ inv_img R {a} → (u, app g u) ∈ f \ {(x, y')}) → (a, φ a (restr g (inv_img R {a}))) ∈ f \ {(x, y')}, conj_intro 109 150. 152. 50, 51, 3, 4, 5 ⊢ set f, set_intro 60. 153. 50, 51, 3, 4, 5 ⊢ set (f \ {(x, y')}), subset 108 152. 154. 50, 51, 2, 3, 4, 5, 61, 62, 106, 107 ⊢ f \ {(x, y')} ∈ {A | A ⊆ X × Y ∧ ∀a. a ∈ X → ∀g. fn_on g (inv_img R {a}) → (∀u. u ∈ inv_img R {a} → (u, app g u) ∈ A) → (a, φ a (restr g (inv_img R {a}))) ∈ A}, comp_intro 153 151, P A ↔ (A ⊆ X × Y ∧ ∀a. a ∈ X → ∀g. fn_on g (inv_img R {a}) → (∀u. u ∈ inv_img R {a} → (u, app g u) ∈ A) → (a, φ a (restr g (inv_img R {a}))) ∈ A). 155. 50, 51, 2, 3, 4, 5, 61, 62, 106, 107 ⊢ f \ {(x, y')} ∈ F, eq_subst_rev 4 154, P u ↔ f \ {(x, y')} ∈ u. 156. 50, 51, 2, 3, 4, 5, 61, 62, 106, 107 ⊢ f ⊆ f \ {(x, y')}, Intersection_is_lower_bound 5 155. 157. 50, 51, 2, 3, 4, 5, 61, 62, 106, 107 ⊢ (x, y') ∈ f \ {(x, y')}, incl_elim 156 106. 158. 50, 51, 2, 3, 4, 5, 61, 62, 106, 107 ⊢ ¬(x, y') ∈ {(x, y')}, diff_elimr 157. 159. ⊢ (x, y') = (x, y'), eq_refl. 160. 106 ⊢ (x, y') ∈ {(x, y')}, sg_intro 144 159. 161. 50, 51, 2, 3, 4, 5, 61, 62, 106, 107 ⊢ ⊥, neg_elim 158 160. 162. 50, 51, 2, 3, 4, 5, 61, 62, 106 ⊢ ¬¬y' = φ x (restr f (inv_img R {x})), neg_intro 161. 163. 50, 51, 2, 3, 4, 5, 61, 62, 106 ⊢ y' = φ x (restr f (inv_img R {x})), dne 162. 164. 50, 51, 2, 3, 4, 5, 61, 62, 106 ⊢ φ x (restr f (inv_img R {x})) = y', eq_symm 163. 165. 50, 51, 2, 3, 4, 5, 61, 62 ⊢ (x, y') ∈ f → φ x (restr f (inv_img R {x})) = y', subj_intro 164. 166. 50, 51, 2, 3, 4, 5, 61, 62 ⊢ ∀y'. (x, y') ∈ f → φ x (restr f (inv_img R {x})) = y', uq_intro 165. 167. 50, 51, 2, 3, 4, 5, 61, 62 ⊢ φ x (restr f (inv_img R {x})) ∈ Y ∧ (x, φ x (restr f (inv_img R {x}))) ∈ f ∧ ∀y'. (x, y') ∈ f → φ x (restr f (inv_img R {x})) = y', conj_intro 104 166. 168. 50, 51, 2, 3, 4, 5, 61, 62 ⊢ ∃y. y ∈ Y ∧ (x, y) ∈ f ∧ ∀y'. (x, y') ∈ f → y = y', ex_intro 167. 169. 50, 51, 2, 3, 4, 5, 61, 62 ⊢ ∃z. z ∈ Y ∧ ∀y. z = y ↔ (x, y) ∈ f, ex_uniq_from_mixed_form 168. 170. 50, 51, 2, 3, 4, 5 ⊢ x ∈ X → (∀u. u ∈ X → (u, x) ∈ R → ∃z. z ∈ Y ∧ ∀y. z = y ↔ (u, y) ∈ f) → (∃z. z ∈ Y ∧ ∀y. z = y ↔ (x, y) ∈ f), subj_intro_ii 169. 171. 50, 51, 2, 3, 4, 5 ⊢ ∀x. x ∈ X → (∀u. u ∈ X → (u, x) ∈ R → ∃z. z ∈ Y ∧ ∀y. z = y ↔ (u, y) ∈ f) → ∃z. z ∈ Y ∧ ∀y. z = y ↔ (x, y) ∈ f, uq_intro 170. 172. 50, 51, 1, 2, 3, 4, 5 ⊢ ∀x. x ∈ X → ∃z. z ∈ Y ∧ ∀y. z = y ↔ (x, y) ∈ f, wf_induction 1 171. 173. 50, 51, 3, 4, 5 ⊢ dom f ⊆ X, dom_of_subclass_prod 56. 174. 50, 51, 3, 4, 5 ⊢ rng f ⊆ Y, rng_of_subclass_prod 56. 175. 50, 51, 1, 2, 3, 4, 5 ⊢ X ⊆ dom f, subclass_dom_from_ex_uniq 172. 176. 50, 51, 1, 2, 3, 4, 5 ⊢ dom f = X, incl_antisym 173 175. 177. 50, 51, 1, 2, 3, 4, 5 ⊢ fn_on f X, fn_on_intro_cod 84 172. 178. 50, 51, 1, 2, 3, 4, 5 ⊢ function f, function_from_fn_on 177 173. 179. 50, 51, 1, 2, 3, 4, 5 ⊢ map f X Y, map_intro 178 176 174. 180. ⊢ inv_img R {x} ⊆ dom R, inv_img_incl_in_dom. 181. 2 ⊢ inv_img R {x} ⊆ X, incl_trans 180 2. 182. 182 ⊢ u ∈ inv_img R {x}, hypo. 183. 2, 182 ⊢ u ∈ X, incl_elim 181 182. 184. ⊢ app f u = app f u, eq_refl. 185. 50, 51, 1, 2, 3, 4, 5, 182 ⊢ (u, app f u) ∈ f, map_app_elim 179 183 184. 186. 50, 51, 1, 2, 3, 4, 5 ⊢ u ∈ inv_img R {x} → (u, app f u) ∈ f, subj_intro 185. 187. 50, 51, 1, 2, 3, 4, 5 ⊢ ∀u. u ∈ inv_img R {x} → (u, app f u) ∈ f, uq_intro 186. 188. 50, 51, 1, 2, 3, 4, 5 ⊢ fn_on f (inv_img R {x}), fn_on_from_map 179 181. 189. 189 ⊢ x ∈ X, hypo. 190. 3, 4, 5, 189 ⊢ ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ f) → (x, φ x (restr g (inv_img R {x}))) ∈ f, subj_elim 37 189. 191. 50, 51, 1, 2, 3, 4, 5, 189 ⊢ (∀u. u ∈ inv_img R {x} → (u, app f u) ∈ f) → (x, φ x (restr f (inv_img R {x}))) ∈ f, uq_bounded_elim 190 188. 192. 50, 51, 1, 2, 3, 4, 5, 189 ⊢ (x, φ x (restr f (inv_img R {x}))) ∈ f, subj_elim 191 187. 193. 50, 51, 1, 2, 3, 4, 5, 189 ⊢ φ x (restr f (inv_img R {x})) = app f x, map_app_intro 179 192. 194. 50, 51, 1, 2, 3, 4, 5, 189 ⊢ app f x = φ x (restr f (inv_img R {x})), eq_symm 193. 195. 50, 51, 1, 2, 3, 4, 5 ⊢ x ∈ X → app f x = φ x (restr f (inv_img R {x})), subj_intro 194. 196. 50, 51, 1, 2, 3, 4, 5 ⊢ ∀x. x ∈ X → app f x = φ x (restr f (inv_img R {x})), uq_intro 195. 197. 50, 51, 1, 2, 3, 4, 5 ⊢ set f ∧ map f X Y, conj_intro 152 179. 198. 50, 51, 1, 2, 3, 4, 5 ⊢ set f ∧ map f X Y ∧ ∀x. x ∈ X → app f x = φ x (restr f (inv_img R {x})), conj_intro 197 196. 199. 50, 51, 1, 2, 3, 4, 5 ⊢ ∃f. set f ∧ map f X Y ∧ ∀x. x ∈ X → app f x = φ x (restr f (inv_img R {x})), ex_intro 198. 200. 50, 51, 1, 2, 3, 4 ⊢ f = ⋂F → ∃f. set f ∧ map f X Y ∧ ∀x. x ∈ X → app f x = φ x (restr f (inv_img R {x})), subj_intro 199. 201. 50, 51, 1, 2, 3, 4 ⊢ ∀f. f = ⋂F → ∃f. set f ∧ map f X Y ∧ ∀x. x ∈ X → app f x = φ x (restr f (inv_img R {x})), uq_intro 200. 202. 50, 51, 1, 2, 3, 4 ⊢ ∃f. set f ∧ map f X Y ∧ ∀x. x ∈ X → app f x = φ x (restr f (inv_img R {x})), disused_eq 201. 203. 50, 51, 1, 2, 3 ⊢ F = {A | A ⊆ X × Y ∧ ∀x. x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ A) → (x, φ x (restr g (inv_img R {x}))) ∈ A} → ∃f. set f ∧ map f X Y ∧ ∀x. x ∈ X → app f x = φ x (restr f (inv_img R {x})), subj_intro 202. 204. 50, 51, 1, 2, 3 ⊢ ∀F. F = {A | A ⊆ X × Y ∧ ∀x. x ∈ X → ∀g. fn_on g (inv_img R {x}) → (∀u. u ∈ inv_img R {x} → (u, app g u) ∈ A) → (x, φ x (restr g (inv_img R {x}))) ∈ A} → ∃f. set f ∧ map f X Y ∧ ∀x. x ∈ X → app f x = φ x (restr f (inv_img R {x})), uq_intro 203. 205. 50, 51, 1, 2, 3 ⊢ ∃f. set f ∧ map f X Y ∧ ∀x. x ∈ X → app f x = φ x (restr f (inv_img R {x})), disused_eq 204. 206. 50, 51 ⊢ wf R X → dom R ⊆ X → (∀x. ∀g. φ x g ∈ Y) → ∃f. set f ∧ map f X Y ∧ ∀x. x ∈ X → app f x = φ x (restr f (inv_img R {x})), subj_intro_iii 205. wf_rec_existence. ⊢ set X → set Y → wf R X → dom R ⊆ X → (∀x. ∀g. φ x g ∈ Y) → ∃f. set f ∧ map f X Y ∧ ∀x. x ∈ X → app f x = φ x (restr f (inv_img R {x})), subj_intro_ii 206.
Dependencies
The given proof depends on 10 axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, power, subset, union.