Proof 01. 1 ⊢ fn_on f A, hypo. 02. 2 ⊢ fn_on g A, hypo. 03. 3 ⊢ ∀x. x ∈ A → app f x = app g x, hypo. 04. 4 ⊢ t ∈ restr f A, hypo. 05. 4 ⊢ t ∈ f ∩ (A × UnivCl), eq_subst restr_eq 4, P u ↔ t ∈ u. 06. 4 ⊢ t ∈ f, intersection_eliml 5. 07. 4 ⊢ t ∈ A × UnivCl, intersection_elimr 5. 08. 1 ⊢ relation f, relation_from_fn_on 1. 09. 1 ⊢ ∀t. t ∈ f → ∃x. ∃y. t = (x, y), relation_unfold 8. 10. 1, 4 ⊢ ∃x. ∃y. t = (x, y), uq_bounded_elim 9 6. 11. 11 ⊢ ∃y. t = (x, y), hypo. 12. 12 ⊢ t = (x, y), hypo. 13. 4, 12 ⊢ (x, y) ∈ A × UnivCl, eq_subst 12 7. 14. 4, 12 ⊢ x ∈ A ∧ y ∈ UnivCl, prod_elim_pair 13. 15. 4, 12 ⊢ x ∈ A, conj_eliml 14. 16. 4, 12 ⊢ y ∈ UnivCl, conj_elimr 14. 17. 4, 12 ⊢ (x, y) ∈ f, eq_subst 12 6. 18. 1, 4, 12 ⊢ y = app f x, fn_on_app_intro 1 15 17. 19. 3, 4, 12 ⊢ app f x = app g x, uq_bounded_elim 3 15. 20. 1, 3, 4, 12 ⊢ y = app g x, eq_subst 19 18, P u ↔ y = u. 21. 1, 2, 3, 4, 12 ⊢ (x, y) ∈ g, fn_on_app_elim 2 15 20. 22. 1, 2, 3, 4, 12 ⊢ (x, y) ∈ g ∩ (A × UnivCl), intersection_intro 21 13. 23. ⊢ restr g A = g ∩ (A × UnivCl), restr_eq. 24. 1, 2, 3, 4, 12 ⊢ (x, y) ∈ restr g A, eq_subst_rev 23 22, P u ↔ (x, y) ∈ u. 25. 1, 2, 3, 4, 12 ⊢ t ∈ restr g A, eq_subst_rev 12 24, P u ↔ u ∈ restr g A. 26. 1, 2, 3, 4, 11 ⊢ t ∈ restr g A, ex_elim 11 25. 27. 1, 2, 3, 4 ⊢ t ∈ restr g A, ex_elim 10 26. 28. 1, 2, 3 ⊢ t ∈ restr f A → t ∈ restr g A, subj_intro 27. 29. 1, 2, 3 ⊢ ∀t. t ∈ restr f A → t ∈ restr g A, uq_intro 28. 30. 1, 2, 3 ⊢ restr f A ⊆ restr g A, incl_intro 29. 31. ⊢ fn_on f A → fn_on g A → (∀x. x ∈ A → app f x = app g x) → restr f A ⊆ restr g A, subj_intro_iii 30. 32. 32 ⊢ x ∈ A, hypo. 33. 3, 32 ⊢ app f x = app g x, uq_bounded_elim 3 32. 34. 3, 32 ⊢ app g x = app f x, eq_symm 33. 35. 3 ⊢ x ∈ A → app g x = app f x, subj_intro 34. 36. 3 ⊢ ∀x. x ∈ A → app g x = app f x, uq_intro 35. 37. 1, 2, 3 ⊢ restr g A ⊆ restr f A, 31 2 1 36. 38. 1, 2, 3 ⊢ restr f A = restr g A, incl_antisym 30 37. fn_on_extensionality. ⊢ fn_on f A → fn_on g A → (∀x. x ∈ A → app f x = app g x) → restr f A = restr g A, subj_intro_iii 38.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.