Proof 01. 1 ⊢ R ⊆ X × Y, hypo. 02. 2 ⊢ x ∈ dom R, hypo. 03. 2 ⊢ ∃y. (x, y) ∈ R, dom_elim 2. 04. 4 ⊢ (x, y) ∈ R, hypo. 05. 1, 4 ⊢ (x, y) ∈ X × Y, incl_elim 1 4. 06. 1, 4 ⊢ x ∈ X ∧ y ∈ Y, prod_elim_pair 5. 07. 1, 4 ⊢ x ∈ X, conj_eliml 6. 08. 1, 2 ⊢ x ∈ X, ex_elim 3 7. 09. 1 ⊢ x ∈ dom R → x ∈ X, subj_intro 8. 10. 1 ⊢ ∀x. x ∈ dom R → x ∈ X, uq_intro 9. 11. 1 ⊢ dom R ⊆ X, incl_intro 10. dom_of_subclass_prod. ⊢ R ⊆ X × Y → dom R ⊆ X, subj_intro 11.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.