Proof 01. 1 ⊢ ∃y. set y ∧ {y} = {y | (x, y) ∈ f}, hypo. 02. 2 ⊢ y = app f x, hypo. 03. 2 ⊢ y = ⋂{y | (x, y) ∈ f}, eq_subst app_eq 2, P u ↔ y = u. 04. 4 ⊢ set b ∧ {b} = {y | (x, y) ∈ f}, hypo. 05. 4 ⊢ set b, conj_eliml 4. 06. 4 ⊢ {b} = {y | (x, y) ∈ f}, conj_elimr 4. 07. 2, 4 ⊢ y = ⋂{b}, eq_subst_rev 6 3, P u ↔ y = ⋂u. 08. 4 ⊢ ⋂{b} = b, Intersection_sg 5. 09. 2, 4 ⊢ y = b, eq_trans 7 8. 10. 2, 4 ⊢ y ∈ {b}, sg_intro 5 9. 11. 2, 4 ⊢ y ∈ {y | (x, y) ∈ f}, eq_subst 6 10, P u ↔ y ∈ u. 12. 2, 4 ⊢ (x, y) ∈ f, comp_elim 11. 13. 1, 2 ⊢ (x, y) ∈ f, ex_elim 1 12. app_elim_lemma. ⊢ (∃y. set y ∧ {y} = {y | (x, y) ∈ f}) → y = app f x → (x, y) ∈ f, subj_intro_ii 13.
Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.