Theorem fn_on_intro

Theorem. fn_on_intro
relation f → (∀x. x ∈ A → ∃z. set z ∧ ∀y. z = y ↔ (x, y) ∈ f) → fn_on f A
Proof
01. 1 ⊢ relation f, hypo.
02. 2 ⊢ ∀x. x ∈ A → ∃z. set z ∧ ∀y. z = y ↔ (x, y) ∈ f, hypo.
03. 1, 2 ⊢ relation f ∧
  (∀x. x ∈ A → ∃z. set z ∧ ∀y. z = y ↔ (x, y) ∈ f), conj_intro 1 2.
04. 1, 2 ⊢ fn_on f A, rsubj_elim fn_on_equi 3.
fn_on_intro. ⊢ relation f →
  (∀x. x ∈ A → ∃z. set z ∧ ∀y. z = y ↔ (x, y) ∈ f) →
  fn_on f A, subj_intro_ii 4.