Proof 01. 1 ⊢ ∀x. x = y → A, hypo. 02. 1 ⊢ y = y → A, uq_elim 1. 03. ⊢ y = y, eq_refl. 04. 1 ⊢ A, subj_elim 2 3. disused_eq. ⊢ (∀x. x = y → A) → A, subj_intro 4.
DependenciesThe given proof depends on one axiom:eq_refl.