Proof 01. 1 ⊢ f = {t | ∃x. x ∈ X ∧ t = (x, y x)}, hypo. 02. 2 ⊢ ∀x. x ∈ X → y x ∈ Y, hypo. 03. 3 ⊢ b ∈ rng f, hypo. 04. 3 ⊢ ∃a. (a, b) ∈ f, rng_elim 3. 05. 5 ⊢ (a, b) ∈ f, hypo. 06. 1, 5 ⊢ (a, b) ∈ {t | ∃x. x ∈ X ∧ t = (x, y x)}, eq_subst 1 5, P u ↔ (a, b) ∈ u. 07. 1, 5 ⊢ ∃x. x ∈ X ∧ (a, b) = (x, y x), comp_elim 6. 08. 8 ⊢ x ∈ X ∧ (a, b) = (x, y x), hypo. 09. 8 ⊢ x ∈ X, conj_eliml 8. 10. 8 ⊢ (a, b) = (x, y x), conj_elimr 8. 11. 5 ⊢ set (a, b), set_intro 5. 12. 5 ⊢ set a, setl_from_pair 11. 13. 5 ⊢ set b, setr_from_pair 11. 14. 5, 8 ⊢ a = x ∧ b = y x, pair_property 12 13 10. 15. 5, 8 ⊢ b = y x, conj_elimr 14. 16. 2, 8 ⊢ y x ∈ Y, uq_bounded_elim 2 9. 17. 2, 5, 8 ⊢ b ∈ Y, eq_subst_rev 15 16, P u ↔ u ∈ Y. 18. 1, 2, 5 ⊢ b ∈ Y, ex_elim 7 17. 19. 1, 2, 3 ⊢ b ∈ Y, ex_elim 4 18. 20. 1, 2 ⊢ b ∈ rng f → b ∈ Y, subj_intro 19. 21. 1, 2 ⊢ ∀y. y ∈ rng f → y ∈ Y, uq_intro 20. 22. 1, 2 ⊢ rng f ⊆ Y, incl_intro 21. rng_from_term. ⊢ f = {t | ∃x. x ∈ X ∧ t = (x, y x)} → (∀x. x ∈ X → y x ∈ Y) → rng f ⊆ Y, subj_intro_ii 22.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.