Proof 01. 1 ⊢ P ∅, hypo. 02. 2 ⊢ ∀n. n ∈ onat → P n → P (succ n), hypo. 03. ⊢ {n | n ∈ onat ∧ P n} ⊆ onat, sep_is_subclass. 04. 1 ⊢ ∅ ∈ onat ∧ P ∅, conj_intro zero_in_onat 1. 05. 1 ⊢ ∅ ∈ {n | n ∈ onat ∧ P n}, comp_intro empty_set_is_set 4. 06. 6 ⊢ n ∈ {n | n ∈ onat ∧ P n}, hypo. 07. 6 ⊢ n ∈ onat ∧ P n, comp_elim 6. 08. 6 ⊢ n ∈ onat, conj_eliml 7. 09. 6 ⊢ P n, conj_elimr 7. 10. 2, 6 ⊢ P n → P (succ n), uq_bounded_elim 2 8. 11. 2, 6 ⊢ P (succ n), subj_elim 10 09. 12. 6 ⊢ succ n ∈ onat, succ_in_onat 8. 13. 6 ⊢ set (succ n), set_intro 12. 14. 2, 6 ⊢ succ n ∈ onat ∧ P (succ n), conj_intro 12 11. 15. 2, 6 ⊢ succ n ∈ {n | n ∈ onat ∧ P n}, comp_intro 13 14, P n ↔ n ∈ onat ∧ P n. 16. 2 ⊢ n ∈ {n | n ∈ onat ∧ P n} → succ n ∈ {n | n ∈ onat ∧ P n}, subj_intro 15. 17. 2 ⊢ ∀n. n ∈ {n | n ∈ onat ∧ P n} → succ n ∈ {n | n ∈ onat ∧ P n}, uq_intro 16. 18. 1, 2 ⊢ {n | n ∈ onat ∧ P n} = onat, onat_induction_sets 3 5 17. 19. 19 ⊢ n ∈ onat, hypo. 20. 1, 2, 19 ⊢ n ∈ {n | n ∈ onat ∧ P n}, eq_subst_rev 18 19. 21. 1, 2, 19 ⊢ n ∈ onat ∧ P n, comp_elim 20. 22. 1, 2, 19 ⊢ P n, conj_elimr 21. 23. 1, 2 ⊢ n ∈ onat → P n, subj_intro 22. 24. 1, 2 ⊢ ∀n. n ∈ onat → P n, uq_intro 23. onat_induction. ⊢ P ∅ → (∀n. n ∈ onat → P n → P (succ n)) → (∀n. n ∈ onat → P n), subj_intro_ii 24.
Dependencies
The given proof depends on eight axioms:
comp, eq_refl, eq_subst, ext, infinity, pairing, subset, union.