Proof let inductive A ↔ ∅ ∈ A ∧ (∀n. n ∈ A → n ∪ {n} ∈ A). 01. 1 ⊢ A ⊆ onat, hypo. 02. 2 ⊢ ∅ ∈ A, hypo. 03. 3 ⊢ ∀n. n ∈ A → succ n ∈ A, hypo. 04. 4 ⊢ n ∈ A, hypo. 05. 3, 4 ⊢ succ n ∈ A, uq_bounded_elim 3 4. 06. 3, 4 ⊢ n ∪ {n} ∈ A, eq_subst succ_eq 5, P x ↔ x ∈ A. 07. 3 ⊢ n ∈ A → n ∪ {n} ∈ A, subj_intro 6. 08. 3 ⊢ ∀n. n ∈ A → n ∪ {n} ∈ A, uq_intro 7. 09. 2, 3 ⊢ inductive A, conj_intro 2 8. 10. 1 ⊢ set A, subset 1 onat_is_set. 11. 1, 2, 3 ⊢ A ∈ {A | inductive A}, comp_intro 10 09. 12. 1, 2, 3 ⊢ onat ⊆ A, Intersection_is_lower_bound onat_eq 11. 13. 1, 2, 3 ⊢ A = onat, incl_antisym 1 12. onat_induction_sets. ⊢ A ⊆ onat → ∅ ∈ A → (∀n. n ∈ A → succ n ∈ A) → A = onat, subj_intro_iii 13.
Dependencies
The given proof depends on five axioms:
comp, eq_subst, ext, infinity, subset.