Proof 01. 1 ⊢ A = B, hypo. 02. ⊢ A ⊆ A, incl_refl. 03. 1 ⊢ B ⊆ A, eq_subst 1 2, P X ↔ X ⊆ A. incl_from_eq_rev. ⊢ A = B → B ⊆ A, subj_intro 3.
DependenciesThe given proof depends on one axiom:eq_subst.