Proof 01. 1 ⊢ ¬M = ∅, hypo. 02. 2 ⊢ ∀y. y ∈ M → x ∈ y, hypo. 03. 1 ⊢ ∃y. y ∈ M, non_empty 1. 04. 4 ⊢ y ∈ M, hypo. 05. 2 ⊢ y ∈ M → x ∈ y, uq_elim 2. 06. 2, 4 ⊢ x ∈ y, subj_elim 5 4. 07. 2, 4 ⊢ set x, set_intro 6. 08. 1, 2 ⊢ set x, ex_elim 3 7. 09. 1, 2 ⊢ x ∈ ⋂M, Intersection_intro 8 2. Intersection_intro_non_empty. ⊢ ¬M = ∅ → (∀y. y ∈ M → x ∈ y) → x ∈ ⋂M, subj_intro_ii 9.
Dependencies
The given proof depends on six axioms:
comp, efq, eq_refl, eq_subst, ext, lem.