Theorem img_union

Theorem. img_union
img (R ∪ Q) A = img R A ∪ img Q A
Proof
01. 1 ⊢ y ∈ img (R ∪ Q) A, hypo.
02. 1 ⊢ ∃x. x in A and (x, y) ∈ R ∪ Q, img_elim 1.
03. 3 ⊢ x in A and (x, y) ∈ R ∪ Q, hypo.
04. 3 |- x in A, conj_eliml 3.
05. 3 |- (x, y) in R cup Q, conj_elimr 3.
06. 3 ⊢ (x, y) ∈ R ∨ (x, y) ∈ Q, union_elim 5.
07. 7 ⊢ (x, y) ∈ R, hypo.
08. 3, 7 ⊢ y ∈ img R A, img_intro 4 7.
09. 3, 7 ⊢ y ∈ img R A ∪ img Q A, union_introl 8.
10. 10 ⊢ (x, y) ∈ Q, hypo.
11. 3, 10 ⊢ y ∈ img Q A, img_intro 4 10.
12. 3, 10 ⊢ y ∈ img R A ∪ img Q A, union_intror 11.
13. 3 ⊢ y ∈ img R A ∪ img Q A, disj_elim 6 9 12.
14. 1 ⊢ y ∈ img R A ∪ img Q A, ex_elim 2 13.
15. ⊢ y ∈ img (R ∪ Q) A → y ∈ img R A ∪ img Q A, subj_intro 14.
16. 16 ⊢ y ∈ img R A ∪ img Q A, hypo.
17. 16 ⊢ y ∈ img R A ∨ y ∈ img Q A, union_elim 16.
18. 18 ⊢ y ∈ img R A, hypo.
19. 18 ⊢ ∃x. x in A and (x, y) ∈ R, img_elim 18.
20. 20 ⊢ x in A and (x, y) ∈ R, hypo.
21. 20 |- x in A, conj_eliml 20.
22. 20 |- (x, y) in R, conj_elimr 20.
23. 20 ⊢ (x, y) ∈ R ∪ Q, union_introl 22.
24. 20 ⊢ y ∈ img (R ∪ Q) A, img_intro 21 23.
25. 18 ⊢ y ∈ img (R ∪ Q) A, ex_elim 19 24.
26. 26 ⊢ y ∈ img Q A, hypo.
27. 26 ⊢ ∃x. x in A and (x, y) ∈ Q, img_elim 26.
28. 28 ⊢ x in A and (x, y) ∈ Q, hypo.
29. 28 |- x in A, conj_eliml 28.
30. 28 |- (x, y) in Q, conj_elimr 28.
31. 28 ⊢ (x, y) ∈ R ∪ Q, union_intror 30.
32. 28 ⊢ y ∈ img (R ∪ Q) A, img_intro 29 31.
33. 26 ⊢ y ∈ img (R ∪ Q) A, ex_elim 27 32.
34. 16 ⊢ y ∈ img (R ∪ Q) A, disj_elim 17 25 33.
35. ⊢ y ∈ img R A ∪ img Q A → y ∈ img (R ∪ Q) A, subj_intro 34.
36. ⊢ y ∈ img (R ∪ Q) A ↔ y ∈ img R A ∪ img Q A, bij_intro 15 35.
37. ⊢ ∀y. y ∈ img (R ∪ Q) A ↔ y ∈ img R A ∪ img Q A, uq_intro 36.
img_union. ⊢ img (R ∪ Q) A = img R A ∪ img Q A, ext 37.

Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.