Proof 01. 1 ⊢ ¬(A ∨ ¬A), hypo. 02. 2 ⊢ A, hypo. 03. 2 ⊢ A ∨ ¬A, disj_introl 2. 04. 1, 2 ⊢ ⊥, neg_elim 1 3. 05. 1 ⊢ ¬A, neg_intro 4. 06. 1 ⊢ A ∨ ¬A, disj_intror 5. 07. 1 ⊢ ⊥, neg_elim 1 6. 08. ⊢ ¬¬(A ∨ ¬A), neg_intro 7. lem_from_dne. ⊢ A ∨ ¬A, dne 8.
DependenciesThe given proof depends on two axioms:efq, lem.