Proof 01. 1 ⊢ relation R, hypo. 02. 2 ⊢ relation Q, hypo. 03. 1 ⊢ ∀t. t ∈ R → ∃x. ∃y. t = (x, y), relation_unfold 1. 04. 2 ⊢ ∀t. t ∈ Q → ∃x. ∃y. t = (x, y), relation_unfold 2. 05. 1 ⊢ t ∈ R → ∃x. ∃y. t = (x, y), uq_elim 3. 06. 2 ⊢ t ∈ Q → ∃x. ∃y. t = (x, y), uq_elim 4. 07. 7 ⊢ t ∈ R ∪ Q, hypo. 08. 7 ⊢ t ∈ R ∨ t ∈ Q, union_elim 7. 09. 9 ⊢ t ∈ R, hypo. 10. 1, 9 ⊢ ∃x. ∃y. t = (x, y), subj_elim 5 9. 11. 11 ⊢ t ∈ Q, hypo. 12. 2, 11 ⊢ ∃x. ∃y. t = (x, y), subj_elim 6 11. 13. 1, 2, 7 ⊢ ∃x. ∃y. t = (x, y), disj_elim 8 10 12. 14. 1, 2 ⊢ t ∈ R ∪ Q → ∃x. ∃y. t = (x, y), subj_intro 13. 15. 1, 2 ⊢ ∀t. t ∈ R ∪ Q → ∃x. ∃y. t = (x, y), uq_intro 14. 16. 1, 2 ⊢ relation (R ∪ Q), relation_fold 15. relation_union. ⊢ relation R → relation Q → relation (R ∪ Q), subj_intro_ii 16.
Dependencies
The given proof depends on two axioms:
comp, eq_subst.