Theorem univ_contains_empty_set

Theorem. univ_contains_empty_set
univ U → ∅ ∈ U
Proof
01. 1 ⊢ univ U, hypo.
02. 1 ⊢ ∅ ∈ U, lsubj_conj_elimlll univ_equi 1.
univ_contains_empty_set. ⊢ univ U → ∅ ∈ U, subj_intro 2.