Proof 01. 1 ⊢ map f X Y, hypo. 02. 2 ⊢ Y ⊆ Z, hypo. 03. 1 ⊢ function f ∧ dom f = X ∧ rng f ⊆ Y, map_unfold 1. 04. 1 ⊢ function f, conj_elimll 3. 05. 1 ⊢ dom f = X, conj_elimlr 3. 06. 1 ⊢ rng f ⊆ Y, conj_elimr 3. 07. 1, 2 ⊢ rng f ⊆ Z, incl_trans 6 2. 08. 1, 2 ⊢ map f X Z, map_intro 4 5 7. map_rng_weaken. ⊢ map f X Y → Y ⊆ Z → map f X Z, subj_intro_ii 8.