Proof 01. 1 ⊢ x ∈ A, hypo. 02. 2 ⊢ A = ∅, hypo. 03. 1, 2 ⊢ x ∈ ∅, eq_subst 2 1. 04. 1, 2 ⊢ ⊥, empty_contra 3. 05. 1 ⊢ ¬A = ∅, neg_intro 4. non_empty_from_witness. ⊢ x ∈ A → ¬A = ∅, subj_intro 5.
Dependencies
The given proof depends on two axioms:
comp, eq_subst.