Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. 1, 2 ⊢ a + b = b + a, radd_comm 1 2. 04. 1, 2 ⊢ a + b + c = b + a + c, eq_cong 3, f t = t + c. radd_perm_213. ⊢ a ∈ ℝ → b ∈ ℝ → a + b + c = b + a + c, subj_intro_ii 4.
Dependencies
The given proof depends on three axioms:
eq_refl, eq_subst, radd_comm.