Proof 01. 1 ⊢ closure_system M U, hypo. 02. 2 ⊢ H = {t | ∃X. X ∈ power U ∧ t = (X, ⋂{A | A ∈ M ∧ X ⊆ A})}, hypo. 03. 1 ⊢ U ∈ M, lsubj_conj_elimlr closure_system_equi 1. 04. 4 ⊢ X ∈ power U, hypo. 05. 4 ⊢ X ⊆ U, power_elim 4. 06. 1, 4 ⊢ U ∈ M ∧ X ⊆ U, conj_intro 3 5. 07. 1, 4 ⊢ U ∈ {A | A ∈ M ∧ X ⊆ A}, comp_intro_from 3 6. 08. ⊢ ⋂{A | A ∈ M ∧ X ⊆ A} = ⋂{A | A ∈ M ∧ X ⊆ A}, eq_refl. 09. 1, 4 ⊢ ⋂{A | A ∈ M ∧ X ⊆ A} ⊆ U, Intersection_is_lower_bound 8 7. 10. 1 ⊢ set U, set_intro 3. 11. 1, 4 ⊢ set (⋂{A | A ∈ M ∧ X ⊆ A}), subset 9 10. 12. 1, 4 ⊢ ⋂{A | A ∈ M ∧ X ⊆ A} ∈ power U, power_intro 11 9. 13. 1 ⊢ X ∈ power U → ⋂{A | A ∈ M ∧ X ⊆ A} ∈ power U, subj_intro 12. 14. 1 ⊢ ∀X. X ∈ power U → ⋂{A | A ∈ M ∧ X ⊆ A} ∈ power U, uq_intro 13. 15. 1, 2 ⊢ map H (power U) (power U), map_from_term 2 14. 16. 16 ⊢ X ⊆ U, hypo. 17. 1, 16 ⊢ set X, subset 16 10. 18. 1, 16 ⊢ X ∈ power U, power_intro 17 16. 19. 1, 2, 16 ⊢ app H X = ⋂{A | A ∈ M ∧ X ⊆ A}, map_from_term_app 2 14 18. 20. 20 ⊢ x ∈ X, hypo. 21. 21 ⊢ A ∈ {A | A ∈ M ∧ X ⊆ A}, hypo. 22. 21 ⊢ A ∈ M ∧ X ⊆ A, comp_elim 21. 23. 21 ⊢ X ⊆ A, conj_elimr 22. 24. 20, 21 ⊢ x ∈ A, incl_elim 23 20. 25. 20 ⊢ A ∈ {A | A ∈ M ∧ X ⊆ A} → x ∈ A, subj_intro 24. 26. 20 ⊢ ∀A. A ∈ {A | A ∈ M ∧ X ⊆ A} → x ∈ A, uq_intro 25. 27. 20 ⊢ set x, set_intro 20. 28. 20 ⊢ x ∈ ⋂{A | A ∈ M ∧ X ⊆ A}, Intersection_intro 27 26. 29. 1, 2, 16, 20 ⊢ x ∈ app H X, eq_subst_rev 19 28, P t ↔ x ∈ t. 30. 1, 2, 16 ⊢ x ∈ X → x ∈ app H X, subj_intro 29. 31. 1, 2, 16 ⊢ ∀x. x ∈ X → x ∈ app H X, uq_intro 30. 32. 1, 2, 16 ⊢ X ⊆ app H X, incl_intro 31. 33. 1, 2 ⊢ X ⊆ U → X ⊆ app H X, subj_intro 32. 34. 1, 2 ⊢ ∀X. X ⊆ U → X ⊆ app H X, uq_intro 33. 35. 35 ⊢ Y ⊆ U, hypo. 36. 1, 35 ⊢ set Y, subset 35 10. 37. 1, 35 ⊢ Y ∈ power U, power_intro 36 35. 38. 1, 2, 35 ⊢ app H Y = ⋂{A | A ∈ M ∧ Y ⊆ A}, map_from_term_app 2 14 37. 39. 39 ⊢ X ⊆ Y, hypo. 40. 35, 39 ⊢ X ⊆ U, incl_trans 39 35. 41. 1, 35, 39 ⊢ set X, subset 40 10. 42. 1, 35, 39 ⊢ X ∈ power U, power_intro 41 40. 43. 1, 2, 35, 39 ⊢ app H X = ⋂{A | A ∈ M ∧ X ⊆ A}, map_from_term_app 2 14 42. 44. 44 ⊢ A ∈ {A | A ∈ M ∧ Y ⊆ A}, hypo. 45. 44 ⊢ A ∈ M ∧ Y ⊆ A, comp_elim 44. 46. 44 ⊢ A ∈ M, conj_eliml 45. 47. 44 ⊢ Y ⊆ A, conj_elimr 45. 48. 39, 44 ⊢ X ⊆ A, incl_trans 39 47. 49. 39, 44 ⊢ A ∈ M ∧ X ⊆ A, conj_intro 46 48. 50. 39, 44 ⊢ A ∈ {A | A ∈ M ∧ X ⊆ A}, comp_intro_from 46 49. 51. 39 ⊢ A ∈ {A | A ∈ M ∧ Y ⊆ A} → A ∈ {A | A ∈ M ∧ X ⊆ A}, subj_intro 50. 52. 39 ⊢ ∀A. A ∈ {A | A ∈ M ∧ Y ⊆ A} → A ∈ {A | A ∈ M ∧ X ⊆ A}, uq_intro 51. 53. 39 ⊢ {A | A ∈ M ∧ Y ⊆ A} ⊆ {A | A ∈ M ∧ X ⊆ A}, incl_intro 52. 54. 39 ⊢ ⋂{A | A ∈ M ∧ X ⊆ A} ⊆ ⋂{A | A ∈ M ∧ Y ⊆ A}, Intersection_dec 53. 55. 1, 2, 35, 39 ⊢ app H X ⊆ ⋂{A | A ∈ M ∧ Y ⊆ A}, eq_subst_rev 43 54, P t ↔ t ⊆ ⋂{A | A ∈ M ∧ Y ⊆ A}. 56. 1, 2, 39, 35 ⊢ app H X ⊆ app H Y, eq_subst_rev 38 55, P t ↔ app H X ⊆ t. 57. 1, 2 ⊢ X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y, subj_intro_ii 56. 58. 1, 2 ⊢ ∀Y. X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y, uq_intro 57. 59. 1, 2 ⊢ ∀X. ∀Y. X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y, uq_intro 58. 60. 1 ⊢ ∀T. T ⊆ M → ¬T=∅ → ⋂T ∈ M, lsubj_conj_elimr closure_system_equi 1. 61. ⊢ {A | A ∈ M ∧ X ⊆ A} ⊆ M, sep_is_subclass. 62. 1, 16 ⊢ U ∈ M ∧ X ⊆ U, conj_intro 3 16. 63. 1, 16 ⊢ U ∈ {A | A ∈ M ∧ X ⊆ A}, comp_intro_from 3 62. 64. 1, 16 ⊢ ¬{A | A ∈ M ∧ X ⊆ A} = ∅, non_empty_from_witness 63. 65. 1 ⊢ ¬{A | A ∈ M ∧ X ⊆ A} = ∅ → ⋂{A | A ∈ M ∧ X ⊆ A} ∈ M, uq_bounded_elim 60 61. 66. 1, 16 ⊢ ⋂{A | A ∈ M ∧ X ⊆ A} ∈ M, subj_elim 65 64. 67. 1, 2, 16 ⊢ app H X ∈ M, eq_subst_rev 19 66, P t ↔ t ∈ M. 68. ⊢ app H X ⊆ app H X, incl_refl. 69. 1, 2, 16 ⊢ app H X ∈ M ∧ app H X ⊆ app H X, conj_intro 67 68. 70. 1, 2, 16 ⊢ app H X ∈ {A | A ∈ M ∧ app H X ⊆ A}, comp_intro_from 67 69, P A ↔ A ∈ M ∧ app H X ⊆ A. 71. ⊢ ⋂{A | A ∈ M ∧ app H X ⊆ A} = ⋂{A | A ∈ M ∧ app H X ⊆ A}, eq_refl. 72. 1, 2, 16 ⊢ ⋂{A | A ∈ M ∧ app H X ⊆ A} ⊆ app H X, Intersection_is_lower_bound 71 70. 73. 1, 2, 16 ⊢ app H X ∈ power U, map_app_in_cod 15 18. 74. 1, 2, 16 ⊢ app H (app H X) = ⋂{A | A ∈ M ∧ app H X ⊆ A}, map_from_term_app 2 14 73. 75. 1, 2, 16 ⊢ app H (app H X) ⊆ app H X, eq_subst_rev 74 72, P t ↔ t ⊆ app H X. 76. 1, 2 ⊢ X ⊆ U → app H (app H X) ⊆ app H X, subj_intro 75. 77. 1, 2 ⊢ ∀X. X ⊆ U → app H (app H X) ⊆ app H X, uq_intro 76. 78. 1, 2 ⊢ set U ∧ map H (power U) (power U), conj_intro 10 15. 79. 1, 2 ⊢ set U ∧ map H (power U) (power U) ∧ (∀X. X ⊆ U → X ⊆ app H X), conj_intro 78 34. 80. 1, 2 ⊢ set U ∧ map H (power U) (power U) ∧ (∀X. X ⊆ U → X ⊆ app H X) ∧ (∀X. ∀Y. X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y), conj_intro 79 59. 81. 1, 2 ⊢ set U ∧ map H (power U) (power U) ∧ (∀X. X ⊆ U → X ⊆ app H X) ∧ (∀X. ∀Y. X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y) ∧ (∀X. X ⊆ U → app H (app H X) ⊆ app H X), conj_intro 80 77. 82. 1, 2 ⊢ closure_operator H U, rsubj_elim clop_equi 81. clop_from_closure_system. ⊢ closure_system M U → H = {t | ∃X. X ∈ power U ∧ t = (X, ⋂{A | A ∈ M ∧ X ⊆ A})} → closure_operator H U, subj_intro_ii 82.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.