Theorem clop_from_closure_system

Theorem. clop_from_closure_system
closure_system M U → H = {t | ∃X. X ∈ power U ∧ t = (X, ⋂{A | A ∈ M ∧ X ⊆ A})} → closure_operator H U
Proof
01. 1 ⊢ closure_system M U, hypo.
02. 2 ⊢ H = {t | ∃X. X ∈ power U ∧
  t = (X, ⋂{A | A ∈ M ∧ X ⊆ A})}, hypo.
03. 1 ⊢ U ∈ M, lsubj_conj_elimlr closure_system_equi 1.
04. 4 ⊢ X ∈ power U, hypo.
05. 4 ⊢ X ⊆ U, power_elim 4.
06. 1, 4 ⊢ U ∈ M ∧ X ⊆ U, conj_intro 3 5.
07. 1, 4 ⊢ U ∈ {A | A ∈ M ∧ X ⊆ A}, comp_intro_from 3 6.
08. ⊢ ⋂{A | A ∈ M ∧ X ⊆ A} = ⋂{A | A ∈ M ∧ X ⊆ A}, eq_refl.
09. 1, 4 ⊢ ⋂{A | A ∈ M ∧ X ⊆ A} ⊆ U,
  Intersection_is_lower_bound 8 7.
10. 1 ⊢ set U, set_intro 3.
11. 1, 4 ⊢ set (⋂{A | A ∈ M ∧ X ⊆ A}), subset 9 10.
12. 1, 4 ⊢ ⋂{A | A ∈ M ∧ X ⊆ A} ∈ power U, power_intro 11 9.
13. 1 ⊢ X ∈ power U →
  ⋂{A | A ∈ M ∧ X ⊆ A} ∈ power U, subj_intro 12.
14. 1 ⊢ ∀X. X ∈ power U →
  ⋂{A | A ∈ M ∧ X ⊆ A} ∈ power U, uq_intro 13.
15. 1, 2 ⊢ map H (power U) (power U), map_from_term 2 14.
16. 16 ⊢ X ⊆ U, hypo.
17. 1, 16 ⊢ set X, subset 16 10.
18. 1, 16 ⊢ X ∈ power U, power_intro 17 16.
19. 1, 2, 16 ⊢ app H X = ⋂{A | A ∈ M ∧ X ⊆ A},
  map_from_term_app 2 14 18.
20. 20 ⊢ x ∈ X, hypo.
21. 21 ⊢ A ∈ {A | A ∈ M ∧ X ⊆ A}, hypo.
22. 21 ⊢ A ∈ M ∧ X ⊆ A, comp_elim 21.
23. 21 ⊢ X ⊆ A, conj_elimr 22.
24. 20, 21 ⊢ x ∈ A, incl_elim 23 20.
25. 20 ⊢ A ∈ {A | A ∈ M ∧ X ⊆ A} → x ∈ A, subj_intro 24.
26. 20 ⊢ ∀A. A ∈ {A | A ∈ M ∧ X ⊆ A} → x ∈ A, uq_intro 25.
27. 20 ⊢ set x, set_intro 20.
28. 20 ⊢ x ∈ ⋂{A | A ∈ M ∧ X ⊆ A},
  Intersection_intro 27 26.
29. 1, 2, 16, 20 ⊢ x ∈ app H X,
  eq_subst_rev 19 28, P t ↔ x ∈ t.
30. 1, 2, 16 ⊢ x ∈ X → x ∈ app H X, subj_intro 29.
31. 1, 2, 16 ⊢ ∀x. x ∈ X → x ∈ app H X, uq_intro 30.
32. 1, 2, 16 ⊢ X ⊆ app H X, incl_intro 31.
33. 1, 2 ⊢ X ⊆ U → X ⊆ app H X, subj_intro 32.
34. 1, 2 ⊢ ∀X. X ⊆ U → X ⊆ app H X, uq_intro 33.
35. 35 ⊢ Y ⊆ U, hypo.
36. 1, 35 ⊢ set Y, subset 35 10.
37. 1, 35 ⊢ Y ∈ power U, power_intro 36 35.
38. 1, 2, 35 ⊢ app H Y = ⋂{A | A ∈ M ∧ Y ⊆ A},
  map_from_term_app 2 14 37.
39. 39 ⊢ X ⊆ Y, hypo.
40. 35, 39 ⊢ X ⊆ U, incl_trans 39 35.
41. 1, 35, 39 ⊢ set X, subset 40 10.
42. 1, 35, 39 ⊢ X ∈ power U, power_intro 41 40.
43. 1, 2, 35, 39 ⊢ app H X = ⋂{A | A ∈ M ∧ X ⊆ A},
  map_from_term_app 2 14 42.
44. 44 ⊢ A ∈ {A | A ∈ M ∧ Y ⊆ A}, hypo.
45. 44 ⊢ A ∈ M ∧ Y ⊆ A, comp_elim 44.
46. 44 ⊢ A ∈ M, conj_eliml 45.
47. 44 ⊢ Y ⊆ A, conj_elimr 45.
48. 39, 44 ⊢ X ⊆ A, incl_trans 39 47.
49. 39, 44 ⊢ A ∈ M ∧ X ⊆ A, conj_intro 46 48.
50. 39, 44 ⊢ A ∈ {A | A ∈ M ∧ X ⊆ A},
  comp_intro_from 46 49.
51. 39 ⊢ A ∈ {A | A ∈ M ∧ Y ⊆ A} →
  A ∈ {A | A ∈ M ∧ X ⊆ A}, subj_intro 50.
52. 39 ⊢ ∀A. A ∈ {A | A ∈ M ∧ Y ⊆ A} →
  A ∈ {A | A ∈ M ∧ X ⊆ A}, uq_intro 51.
53. 39 ⊢ {A | A ∈ M ∧ Y ⊆ A} ⊆ {A | A ∈ M ∧ X ⊆ A}, incl_intro 52.
54. 39 ⊢ ⋂{A | A ∈ M ∧ X ⊆ A} ⊆ ⋂{A | A ∈ M ∧ Y ⊆ A},
  Intersection_dec 53.
55. 1, 2, 35, 39 ⊢ app H X ⊆ ⋂{A | A ∈ M ∧ Y ⊆ A},
  eq_subst_rev 43 54, P t ↔ t ⊆ ⋂{A | A ∈ M ∧ Y ⊆ A}.
56. 1, 2, 39, 35 ⊢ app H X ⊆ app H Y,
  eq_subst_rev 38 55, P t ↔ app H X ⊆ t.
57. 1, 2 ⊢ X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y, subj_intro_ii 56.
58. 1, 2 ⊢ ∀Y. X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y, uq_intro 57.
59. 1, 2 ⊢ ∀X. ∀Y. X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y, uq_intro 58.
60. 1 ⊢ ∀T. T ⊆ M → ¬T=∅ → ⋂T ∈ M,
  lsubj_conj_elimr closure_system_equi 1.
61. ⊢ {A | A ∈ M ∧ X ⊆ A} ⊆ M, sep_is_subclass.
62. 1, 16 ⊢ U ∈ M ∧ X ⊆ U, conj_intro 3 16.
63. 1, 16 ⊢ U ∈ {A | A ∈ M ∧ X ⊆ A}, comp_intro_from 3 62.
64. 1, 16 ⊢ ¬{A | A ∈ M ∧ X ⊆ A} = ∅, non_empty_from_witness 63.
65. 1 ⊢ ¬{A | A ∈ M ∧ X ⊆ A} = ∅ → ⋂{A | A ∈ M ∧ X ⊆ A} ∈ M,
  uq_bounded_elim 60 61.
66. 1, 16 ⊢ ⋂{A | A ∈ M ∧ X ⊆ A} ∈ M, subj_elim 65 64.
67. 1, 2, 16 ⊢ app H X ∈ M, eq_subst_rev 19 66, P t ↔ t ∈ M.
68. ⊢ app H X ⊆ app H X, incl_refl.
69. 1, 2, 16 ⊢ app H X ∈ M ∧ app H X ⊆ app H X, conj_intro 67 68.
70. 1, 2, 16 ⊢ app H X ∈ {A | A ∈ M ∧ app H X ⊆ A},
  comp_intro_from 67 69, P A ↔ A ∈ M ∧ app H X ⊆ A.
71. ⊢ ⋂{A | A ∈ M ∧ app H X ⊆ A} = ⋂{A | A ∈ M ∧ app H X ⊆ A}, eq_refl.
72. 1, 2, 16 ⊢ ⋂{A | A ∈ M ∧ app H X ⊆ A} ⊆ app H X,
  Intersection_is_lower_bound 71 70.
73. 1, 2, 16 ⊢ app H X ∈ power U, map_app_in_cod 15 18.
74. 1, 2, 16 ⊢ app H (app H X) = ⋂{A | A ∈ M ∧ app H X ⊆ A},
  map_from_term_app 2 14 73.
75. 1, 2, 16 ⊢ app H (app H X) ⊆ app H X,
  eq_subst_rev 74 72, P t ↔ t ⊆ app H X.
76. 1, 2 ⊢ X ⊆ U → app H (app H X) ⊆ app H X, subj_intro 75.
77. 1, 2 ⊢ ∀X. X ⊆ U → app H (app H X) ⊆ app H X, uq_intro 76.
78. 1, 2 ⊢ set U ∧ map H (power U) (power U), conj_intro 10 15.
79. 1, 2 ⊢ set U ∧ map H (power U) (power U) ∧
  (∀X. X ⊆ U → X ⊆ app H X), conj_intro 78 34.
80. 1, 2 ⊢ set U ∧ map H (power U) (power U) ∧
  (∀X. X ⊆ U → X ⊆ app H X) ∧
  (∀X. ∀Y. X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y), conj_intro 79 59.
81. 1, 2 ⊢ set U ∧ map H (power U) (power U) ∧
  (∀X. X ⊆ U → X ⊆ app H X) ∧
  (∀X. ∀Y. X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y) ∧
  (∀X. X ⊆ U → app H (app H X) ⊆ app H X), conj_intro 80 77.
82. 1, 2 ⊢ closure_operator H U, rsubj_elim clop_equi 81.
clop_from_closure_system. ⊢ closure_system M U →
  H = {t | ∃X. X ∈ power U ∧ t = (X, ⋂{A | A ∈ M ∧ X ⊆ A})} →
  closure_operator H U, subj_intro_ii 82.

Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.